

Whatôs New in
Omnis Studio 5.1

Extending Omnis to New Platforms and New
Markets

TigerLogic Corporation
October 2010

13-102010-01

The software this document describes is furnished under a license agreement. The software may be
used or copied only in accordance with the terms of the agreement. Names of persons, corporations, or
products used in the tutorials and examples of this manual are fictitious. No part of this publication may
be reproduced, transmitted, stored in a retrieval system or translated into any language in any form by
any means without the written permission of TigerLogic.

© TigerLogic Corporation, and its licensors 2010. All rights reserved.
Portions © Copyright Microsoft Corporation.
Regular expressions Copyright (c) 1986,1993,1995 University of Toronto.

© 1999-2010 The Apache Software Foundation. All rights reserved.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

Omnis® and Omnis Studio® are registered trademarks of TigerLogic Corporation.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows Vista, Windows Mobile, Win32, Win32s are
registered trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US
and other countries.

Apple, the Apple logo, Mac OS, Macintosh, iPhone, and iPod touch are registered trademarks and iPad
is a trademark of Apple, Inc.

IBM, DB2, and INFORMIX are registered trademarks of International Business Machines Corporation.

ICU is Copyright © 1995-2003 International Business Machines Corporation and others.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company
Ltd.

J2SE is Copyright (c) 2003 Sun Microsystems Inc under a license agreement to be found at:
http://java.sun.com/j2se/1.4.2/docs/relnotes/license.html

Portions Copyright (c) 1996-2008, The PostgreSQL Global Development Group
Portions Copyright (c) 1994, The Regents of the University of California

Oracle, Java, and MySQL are registered trademarks of Oracle Corporation and/or its affiliates

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase Inc.

Acrobat is a registered trademark of Adobe Systems, Inc.

CodeWarrior is a trademark of Metrowerks, Inc.

This software is based in part on ChartDirector, copyright Advanced Software Engineering
(www.advsofteng.com).

This software is based in part on the work of the Independent JPEG Group.
This software is based in part of the work of the FreeType Team.

Other products mentioned are trademarks or registered trademarks of their corporations.

 Table of Contents

 3

Table of Contents
ABOUT THIS MANUAL .. 5

WHATôS NEW IN OMNIS STUDIO 5.1 6

Library Conversion ... 6
Serial Numbers ... 6

CREATING OMNIS APPLICATIONS FOR IOS 7
Introduction .. 7
Requirements .. 7
Creating Remote forms for iOS .. 8
iOS Form Properties and Methods 18
iOS Form Events ... 20
iOS Components ... 21
Creating an Omnis iOS app .. 52
Testing your Omnis iOS app ... 54
Deploying your Omnis iOS app .. 56
Troubleshooting .. 60

AMAZON DAM ... 61
Dependencies .. 61
Logging on to SimpleDB ... 62
Meta Data ... 63
SimpleDB attributes and multi-values 63
Creating a Domain ... 64
Inserting Data ... 64
Deleting Data ... 64
Replacing Data ... 65
Fetching Data ... 65
Machine Utilization .. 68
Read Consistency .. 68
Conditional Puts and Deletes ... 69
Session Properties .. 70
Session Methods ... 70
Statement Properties ... 71
Statement Methods .. 72
Implementation Notes ... 73

M ISCELLANEOUS ENHANCEMENTS.. 74
HTTP commands .. 74
Apple Menu Hide Key String .. 74
Remote Menu Lines .. 74

Table of Contents

4

WHATôS NEW IN OMNIS STUDIO 5.0.1 75

WINDOWS 7 ... 76
MAC OS X .. 76
CLIENT COMMANDS .. 77
ENTRY FIELDS ... 78
REMOTE FORMS .. 78
WINDOW FIELDS ... 78
LOCALIZATION .. 80
STUDIO MESSAGES .. 80
TRACE LOG ... 80
WEB COMMANDS .. 80
SERVER LOAD SHARING .. 81
USING THE ODB ... 82

WHATôS NEW IN OMNIS STUDIO 5.0 84

NEW FEATURES ... 84
SERIAL NUMBERS .. 86
LIBRARY AND DATA FILE CONVERSION 86
SYSTEM REQUIREMENTS ... 86
WINDOWS MOBILE CLIENT ... 87
REMOTE MENUS .. 105
WEB SERVER PLUG-IN .. 107
UNICODE ... 111
LOCALIZATION .. 123
OMNIS VCS ... 135
METHODS .. 139
FORM COMPONENTS .. 141
ACCESSING THE WINDOWS REGISTRY 145
DAM S ... 148
M ISCELLANEOUS ENHANCEMENTS...................................... 154
SECURE WEB COMMUNICATIONS .. 162
FUNCTIONS .. 166

 About This Manual

 5

About This Manual
This document describes the new features and enhancements in Omnis Studio 5.1. It also

includes information about Omnis Studio 5.0.1 and 5.0 which was published in their

respective óWhatôs Newô manuals, and is reproduced here for your convenience.

Please see the file Readme.txt for details of bug fixes and any last minute notes for this

release.

If you are new to Omnis Studio
If you are new to Omnis Studio you should start by reading the Introducing Omnis Studio

manual and then the Omnis Programming and Extending Omnis manuals. All the Omnis

Studio manuals are available on the product DVD and to download from the Omnis website

(www.tigerlogic.com/omnis).

Whatôs New in Omnis Studio 5.1

6

Whatôs New in Omnis
Studio 5.1

Omnis Studio 5.1 provides support for mobiles devices running Appleôs iOS (formerly

known as iPhone OS). This mobile platform originated on the iPod and iPhone, but is now

on the iPad from Apple.

Ç Apple iOS support
Studio 5.1 allows you to create remote forms that will run on iOS based mobiles

devices which means you can deploy your Omnis applications to the latest devices

from Apple including iPadÊ, iPhone® and iPod touch®.

Ç Amazon DAM
A new Omnis DAM, available for Windows, Mac OS X, and Linux, that allows you to

access the SimpleDB from Amazon, a non-relational data store widely used in

ecommerce applications and large information websites

Ç HTTP commands
The Map+ parameter has been added to the HTTPGet() and HTTPPost() commands to

specify that plus (+) characters in CGI parameter names and values in the CGI List are

URL encoded using hex.

Ç Apple Menu Hide Key String
The AppleMenuHideKey command (Apple + H key combination) has been added to

the built-in strings in Omnis, so you can edit this string to change the letter to activate

the command.

Ç Remote Menu Lines
You can now set the text for a remote menu line to $st.id. The string table lookup

occurs when the menu is built on the client, before any event processing for the menu.

Library Conversion
Omnis Studio 5.1 will try to convert libraries created in a previous version of Omnis Studio

when you open them in the new version. Please ensure you have a secure backup of all

libraries before you open them in Omnis Studio 5.1.

Serial Numbers
You will require a new serial number to run Omnis Studio 5.1. Contact your local sales

office for further details.

 Creating Omnis Applications for iOS

 7

Creating Omnis Applications for iOS
Introduction
To create an iOS app using Omnis Studio, you have to create a Remote Form specifically

designed for iOS. Once you have switched an Omnis remote form to an iOS form and

placed iOS components on the form, it cannot be converted back to a non-iOS remote form

for the web, or used on other mobile platforms such as Windows Mobile. However you can

add iOS remote forms to the same Omnis application (library) containing Web and Mobile

remote forms and re-use the underlying methods and schema classes, for example, in your

iOS remote forms.

Many of the techniques required for building iOS apps, and in particular for creating Omnis

Remote Forms, are the same as those for creating Omnis Web and Mobile Client

applications available in previous versions. These techniques are discussed in detail in the

Extending Omnis manual for Omnis Studio 5, available to download from the Omnis

website. However there are several features that are unique to the iOS support which are

covered in this chapter.

iOS naming

General references to ñiOSò or an ñiOS deviceò usually refer to any device running the iOS

from Apple, including the iPad, iPhone and iPod touch. However, you should check the

capabilities of each device and test your iOS app on all devices you wish to support in your

app.

Requirements
Development Software

To create Omnis applications for iOS you must use Omnis Studio 5.1 or above. You can

design remote forms for iOS in the Mac OS X, Windows, or Linux version of Omnis

Studio. That is, the iOS remote form components are available in all platforms, but you will

need a Mac OS X computer to build your app.

To build device and simulator apps, and to run the latest version of Xcode and the SDK

from Apple, you will need Mac OS X 10.6 (Snow Leopard) or above.

You will also need a copy of iTunes to sync your computer with your iOS device.

iOS and supported devices

To use the iOS functionality in Omnis Studio, the client will need an iOS based device. The

iOS runs on various mobile or handheld devices from Apple including:

Ç iPhone®

Ç iPod touch®

Ç iPadÊ

The majority of iOS features available in Omnis Studio 5.1 will work on all iOS enabled

devices, but you will need to check the specification of individual devices and take into

Whatôs New in Omnis Studio 5.1

8

account the different screen sizes for different devices when designing your app. We

strongly urge you to test your Omnis iOS apps on all the devices you wish to support before

deploying your application.

iOS Developer Program and Distribution

You need to sign up to the Apple iOS Developer Program to obtain the necessary files from

Apple and to build your Omnis iOS app. To distribute your iOS app, within your

organization or at a client site, you need to use one of the approved Distribution methods

which usually will allow you to deploy your iOS app to a specified number of devices.

Further details about distribution are available from Apple Inc, and are outlined later in this

chapter.

Creating Remote forms for iOS
Designing remote forms for iOS is more-or-less the same as designing standard remote

forms for the web or any other platform in Omnis Studio. However, remote forms for iOS

use the native iOS controls so you need to ñswitch onò the iOS functionality and

components in the remote form, using the $ios remote form property.

If you open an existing remote form, containing standard non-iOS specific components, the

$ios property will be grayed out and you will not be able to switch the remote form to an

iOS enabled form. Similarly, an iOS enabled remote form that contains iOS specific

components cannot be switched back to a standard web remote form. For this reason, you

will have to create your iOS remote forms from scratch, since the iOS components and

standard web components are not interchangeable.

To create a remote form for iOS

¶ Click on the New Class option in the Studio Browser, scroll down and click on the

iOS Form option

This option will create a new remote form with the $ios property already set to kTrue, plus

the default screen sizes for the form are assigned for each orientation.

Or you can

¶ Create a new remote form using the New Class>>RemoteForm option in the Studio

Browser

¶ Click on the background of the remote form and in the Property Manager set its $ios

property to kTrue

Plus, for either option, youôll need to:

¶ Create a remote task and assign its name to the iOS remote formôs $designtaskname

property

When you create or switch a remote form to iOS, the Component Store will display iOS

Components only, under the óiOS Componentsô group, replacing the standard Web

Components, while the remote form design window will display a mobile device image in

 Creating Omnis Applications for iOS

 9

the border and the title bar. The iOS components are located in the ioscomp folder in your

Omnis development tree.

The iOS remote form (right) and the Omnis Component Store (left)

showing the twenty or so iOS components

From here on, existing Omnis developers will find the layout and visual design of forms for

iOS very familiar, although you set the behavior of components in a different way. You can

design your remote form for iOS in the same way as you would for a standard web-based

remote form.

When you open a remote form from the Studio Browser, the Component Store will display

the appropriate components depending on the type of remote form you open, either a

remote form for iOS, or for web browsers, or some other client device.

Whatôs New in Omnis Studio 5.1

10

There are several properties you need to set to specify the behavior, event handling and

other functionality in your iOS remote form; these are listed in the iOS Form Properties

and Methods section below.

Screen size and form layout

By default, the $screensize property is set to kSSZiOS320x480Portrait, but you can switch

the form to kSSZiOS320x480Landscape to design an alternative layout. This screen size is

supported on the iPhone and iPod touch, while the kSSZiOS768x1024... screen sizes are for

iPad.

You can design different layouts for the different sizes and orientations and store them in

the same remote form. In other words, each layout uses the same set of fields (and methods)

and the remote form class stores the position of the fields for each screen size/orientation

setting. If you have created a form layout for portrait and landscape and the end user tilts

the device, the layout of the Omnis remote form will change automatically (unless you have

set the portrait only property in the client configuration file).

Window title bar

When designing for different screen sizes you must take account of the iOS title bar. For

example, the screen size of an iPhone is 320 x 480 pixels, but by default the title bar at the

top of the remote form is visible, giving you a possible screen area of 320 x 460 pixels in

portrait mode (the title bar is 20 pixels high). The $designshowmobiletitle remote form

property (under the Appearance tab in the Property Manager) lets you hide or show the

window title on the iOS device.

Form width and height

The $width and $height properties of the form are independent of the current screen size

and orientation, so you can change their values if required, taking into account whether or

not the title bar is visible. The settings of $width and $height for each size/orientation you

set up are stored in the remote form class, along with the position of all fields and other

components for each layout.

You will notice that the area defined by $width and $height is shown as a black area and

indicates the window area visible on the client; the area beyond the visible area is dotted.

You cannot place fields beyond the area defined by the $width and $height properties using

your mouse, although you can set the value of $left and $top for an object (either in the

Property Manager or using the notation) to place any object outside the visible form area.

The default values for the iPhone $screensize setting are $width = 320 and $height = 460

for Portrait mode, and $width = 480 and $height = 300 for Landscape mode. Note this takes

account of the window title bar (which is visible by default) so if you hide the design

window title bar, youôll need to add 20 pixels to the $height setting.

 Creating Omnis Applications for iOS

 11

Component Methods and Client Execution

The properties and behavior of the iOS specific components are a little different from the

standard remote form components (listed under Web Components in the Component Store),

and using the iOS components requires a slightly different approach. The biggest difference

between remote forms for the web and iOS is that client method execution is not allowed in

remote forms in iOS apps. As a consequence, iOS components do not have specific

methods (except for $redraw), rather you control the behavior of objects by assigning

values to their properties using the Do <property>.$assign() method or the Calculate

<property> as value command. The properties for each component, together with code

examples, are listed in the iOS Components section below.

Debugging Methods

You can debug your methods as you are testing your application on the client device by

setting breakpoints in your code. You can right click on a method line and select the

Breakpoint option to set a breakpoint. When you test the application on your client device

and the breakpoint is encountered in your code, method execution is halted at the

breakpoint and the application is temporarily suspended on the device. At this point, you

can switch back to Omnis on your development computer and step through the live code,

inspecting variable values (Right-click on the variable name anywhere in your code and

select the Variable <varname> option), commenting and uncommenting code (using Ctrl-;

and Ctrl-ó), and so on. When execution has completed in the Omnis method editor, the app

will resume operation on the client device.

Whatôs New in Omnis Studio 5.1

12

Getting App and Device Information

$construct() for remote forms and remote tasks is passed a row variable parameter,

typically called pParams. To use pParams, you must declare it in the parameters tab of the

variables pane for $construct(). The row variable contains the connection parameters for the

remote form and/or remote task and may contain useful information for your application.

The pParams variable has the following columns:

pParams column Description

OmnisPlatform The client platform, e.g. IPHONEU

WebServerUrl The URL of the Web Server through which your iOS client

application connects to the Omnis Server; during development

this will be the IP address of your computer and the port

number of your development copy of Omnis

WebServerScript The path or location of the Omnis Web Server plug-in, usually

located in your cgi-bin or scripts folder, e.g. /cgi-bin/omnisnph-

cgi.exe; during development, this will be /webclient which

means Omnis will use its own built-in web server

OmnisLibrary The name of the Omnis library containing your iOS app

OmnisClass The name of the remote form in your Omnis library

OmnisServer the IP address and port number of the Omnis Server; during

development this will refer to your local computer IP address

and local copy of Omnis Studio

ClientLocale The locale of the client device, e.g. en_GB

MobileScreenWidth The screen width of the current client device

MobileScreenHeight The screen height of the current client device

ClientInfoIphone (iOS forms/tasks only) the iOS device type, e.g. óiPod1,1ô for a

first generation iPod

UDID (iOS forms/tasks only) The unique ID of the current iOS device

To view the pParams row variable in design mode, you can set a breakpoint in the

$construct() method and open/test your remote form. Switch to the Omnis debugger, click

on the Parameters pane in the method editor, right-click the pParams variable and select the

óVariable pParamséô option. A small popup window will show the columns in the

pParams row variable.

 Creating Omnis Applications for iOS

 13

Device type

For iOS remote forms or associated remote tasks, the ClientInfoIphone parameter contains

a character string reporting the iOS device type. The ClientInfoIphone parameter may be

one of the following values (note other device types may be added in future):

ClientInfoIphone Description

i386 iPhone Simulator

iPhone1,1 iPhone

iPhone1,2 3G iPhone

iPhone2,1 3GS iPhone

iPhone3,1 4 iPhone

iPod1,1 1st Generation iPod

iPod2,1 2nd Generation iPod

iPod3,1 3rd Generation iPod

The following code within the form $construct() could be used to return the current device

type:

Calculate device Type as pParams.ClientInfoIphone

Unique Device Indentifier (UDID)

The pParams row variable contains the UDID parameter which is the unique ID of the

current iOS device. The following code within the form $construct() could be used to return

the UDID:

Calculate deviceID as pParams. UDID

Whatôs New in Omnis Studio 5.1

14

The UDID is useful for identifying individual devices or end users, allowing you to store

some information in your app, such as the configuration of a Tabbar as selected by an end

user, against individual UDIDs.

Component Transparency

All iOS components have the $alpha property which specifies the transparency of the

component, with 0 being completely transparent and 255 being opaque; for most controls,

$alpha is set to 255 by default. Some components also have the $backalpha property which

controls the transparency of the background part of the control, rather than the foreground

elements or data in the control.

Component Icons

Several of the iOS components allow you to use icons to enhance the user experience. This

includes standard pushbuttons (iButton control), as well as the navbar, segmented, tabbar,

and toolbar controls, where you can use an icon to represent a single button, segment, or

tab. You can use an icon from any of the Omnis icon datafiles or the #ICONS system table

in your library, although the latter is advised. The icon for a component or button is

specified in its $iconid property. The icon used must support Alpha values to be displayed

in iOS.

Alpha icons

You must use icons with alpha values in components on iOS remote forms; non-Alpha

icons are not supported for iOS components and will not display correctly. Therefore when

you choose an icon for a component, by clicking on its $iconid property, you must choose

an Alpha compatible icon from an Omnis icon datafile or the #ICONS system table in your

library.

Icon pages

If you use an icon in any iOS component, such as a button or toolbar, you must specify the

icon page name for the icon in the $iconpages property of the remote form. If the icon page

is not listed in the $iconpages property, the icons will not be sent to the client and will not

be displayed. So for example, if you have created your own icon page in #ICONS, you

must check its name to the $iconpages property of the remote form.

 Creating Omnis Applications for iOS

 15

Creating your own icons

You can view or edit the icons in one of the Omnis icon datafiles, such as #ICONS, using

the Omnis Icon Editor (open via the Tools>>Icon Editor option). You can add your own

icons using the same tool, which is described in detail in the Omnis Programming manual

in the Library Tools chapter.

To view the Alpha version of an icon page, you select the icon page and click on the large

blue ñAò icon on the right hand side on the Icon Editor window, as shown above. Pages

that support Alpha icons are indicated in the Pages list using a small blue ñAò icon, as

shown above.

To create a new page, click on ñNew Icon Pageò and make sure you select the ñSolid &

Alphaò option. In addition, you must check the boxes for 32x32 and 48x48 if you intend to

add icons for this size.

Importing Images to an Icon file

When importing your own Alpha compatible icons into an Icon Page you must use the

ñPaste From Fileò option to import each Alpha image: you cannot use Copy and Paste from

another image application since the Alpha properties may not be imported successfully

using this method.

Whatôs New in Omnis Studio 5.1

16

To import an Alpha icon, such as a PNG file, place your cursor in the icon field in the Icon

Editor (as above), select Paste from File from the Edit menu, and select the image file you

wish to import. Assign an ID to the icon and save the icon page. Note you can only add an

icon of a particular size if the page supports that size: you can change the icon size support

in the Page Options for a page.

#ICONS and icon pages

In most cases, you are advised not to edit or change the Omnis icon datafiles (Omnispic and

Userpic), since many of the icons in these files are used in the Omnis environment itself.

Rather you are advised to add your own icons to the #ICONS table in your library. You can

open the #ICONS file by double-clicking it in the Studio Browser (it is in the System

Classes folder in your library), or you can open it from within the Icon Editor.

You should also try to limit the number of icon pages used in your iOS app since all icon

pages that contain icons in use (and listed $iconpages) are sent to the client ï if many icon

pages are sent to the client, this may create an unnecessary burden on network traffic.

Therefore you may want to add all the icons you need for your app to a single icon page in

your #ICONS table ï this will be more efficient and easier to maintain, especially if you are

using the Omnis VCS to manage your library.

Styles

You can assign styles to iOS components based on the Field Styles defined in your library

in the #STYLES system class. The definition for iOS styles are added under the kiOS

section of the #STYLES system class.

Fonts

There is a new system class #IOSWFONTS to handle fonts on iOS devices. A new column

called iOS has been added to the Window font table to allow you to map fonts used in

desktop, web, and mobile forms, including iOS forms. (Note there is no equivalent font

mapping for reports on mobile devices since Omnis reports do not run on mobile devices.)

Subforms, multiple forms and superclasses

You can add subforms to your remote forms allowing you, in effect, to embed one or more

remote forms into a single remote form or application window. Using a single ñmainò form

and a number of other forms loaded at runtime into a subform, would allow you to create a

powerful and interactive iOS app.

The subform component is a standard Omnis component, but is available in the óiOS

Componentsô group in the Component Store. When you have placed the subform on your

remote form, you specify the remote form to appear in the subform in its $classname

property. The subform field can be linked to a navbar or tabbar component using the

 Creating Omnis Applications for iOS

 17

$linkedobject property, and depending on what the end-user clicks on, you can switch

forms back and forth accordingly.

You can use multiple forms in the iOS app by switching from the initial form to another

remote form using the $changeform() method.

You can use an empty remote form as the superclass of an iOS remote form and a non-iOS

remote form simultaneously, which allows you to share code between iOS and non-iOS

remote forms.

Paged panes

You can use a Paged pane in your iOS apps to simplify the user interface by placing a small

number of fields and controls on separate panes and switching panes as appropriate.

Like the subform, the paged pane is a standard Omnis component and is available in the

óiOS Componentsô group in the Component Store. The paged pane can also be linked to a

navbar or tabbar component via the $linkedobject property in the navigation component.

Setting form properties

When designing a remote form, you often need to click on the background of the form to

set its properties in the Property Manager. This may be difficult if your form is completely

filled with components and no form background is available to click on, as is often the case

for mobile forms. To select the form in this case, you can use the Field List (right-click

anywhere on the form, open the Field List and check the form name to open the Property

Manager for the form), or if you click on any individual component, then shift-click it to

deselect it, the focus will be returned to the form and its properties will be shown in the

Property Manager.

iOS Preferences

The following commands are available for iOS remote forms only and allow you to save

and load end-user data on the client, such as user preferences. To implement these

preferences you need to use the $clientcommand() method which has the following general

syntax:

Do $cinst.$clientcommand("commandname",row - variable)

savepreference

Saves a value (as a character string) as a named preference on the client. You could use this

to store a username or a password for logging onto your app.

Do $cinst.$clientcommand(" savepreference ",row - variable)

Where row-variable is row(preference name, preference value).

loadpreference

Loads a named preference value from the client preferences into an instance variable.

Do $cinst.$clientcommand(" loadpreference ",row - variable)

Where row-variable is row(preference name, instance variable name (e.g. a quoted string

containing the name of the variable)).

Whatôs New in Omnis Studio 5.1

18

iOS Form Properties and Methods
Remote forms for iOS have all the properties and methods of a standard remote form

together with a number of iOS specific properties, as well as some additional events. See

the Omnis Notation Reference manual, or the Omnis Help (press F1), for a full description

of the standard remote form properties and methods not listed here.

iOS Form Properties

Remote forms for iOS have many of the standard properties of a remote form together with

a number of iOS specific properties described here.

$alpha The alpha value for the form, a value 0-255, where 0 is

completely transparent, 255 is opaque

$backalpha The alpha component of the background color of the form, a

value 0-255, where 0 is completely transparent, 255 is opaque

$designshowmobiletitle Hides or shows the title bar; if you deploy the form without the

window title bar you need to disable the title bar in the client

configuration; see below; in addition, if you hide the title,

youôll need to add 20 pixels to the $height of the form

$designtaskname You need to create a remote task and set this property to the

remote task name; this is required to test the form

$events You have to enable specific events for the remote form,

otherwise they will not be reported; see the Remote Form

Events section below

$iconpages a comma separated list of icon pages that contain icons you

have used for any components in your remote form; the icon

pages listed here are sent to the client so it is usually more

efficient to add all the icons you need for your iOS app to a

single icon page, which must support Alpha (use the Omnis

Icon Editor to add/edit icon pages); note icons/icon pages can

be stored in #ICONS in the library

$ios Set this to kTrue to ñswitchò the remote form to an iOS

compatible form; note this property will be grayed out if the

remote form contains any components including standard web

comps; the form has to be empty to set this property

$screensize Specifies the screen size and layout of the form;

for iPhone and iPod devices this is

kSSZiOS320x480Portrait

kSSZiOS320x480Landscape

for iPad this is

kSSZiOS768x1024Portrait

kSSZiOS768x1024Landscape

Note you also need to set the $height and $width of the form for

each size/orientation that you use in the form

 Creating Omnis Applications for iOS

 19

iOS Form Methods

Remote forms for iOS have many of the standard methods of a remote form, as well as a

number of iOS specific methods listed here. For example, $showmessage()can be used to

display an OK message on the client.

Method Description

$beginanimations() $beginanimations(iDuration

[,iCurve=kiOSAnimationCurveEaseInOut, iRepeatCount=0,

bAutoReverse=kFalse]) after calling this method, assignments to

some properties are animated for iDuration milliseconds by

$commitanimations()

$commitanimations() $commitanimations() animates the relevant property changes that

have occurred after the matching call to $beginanimations()

$redraw() $redraw([bSetcontents=kTrue, bRefresh=kFalse, bBobjs=kFalse])

redraws the window or field; Do $cinst.$redraw() redraws the form

$setcurfield() $setcurfield(vNameOrIdentOrItemref) sets the current field on the

client computer which is useful for data entry forms; when this is

set the focus is placed in the field and on iOS the soft keypad is

initiated; $setcurfield(óô) removes the focus from the current field

$showmessage() $showmessage(cMessage [,cTitle]) Displays an OK message on

the client computer using the specified cMessage and cTitle

$clientcommand() allows you to execute various functions on the iOS client, such as

Yes/No messages and client preferences; see earlier in this chapter

Remote task methods

Together with the remote form methods, you can use the standard remote task methods in

your iOS apps, including $openform() and $changeform(). For example, the following

method can be placed behind a button to allow the end user to navigate back to the previous

screen; in this case, the app appears to órememberô the last page and uses the $openform()

method to reopen the last form:

On evClick ;; the last form visited is sa ved in tLastPage

 Do $openform(

 $ctask.tLastPage,kFormTransTypeFade,kFormTransDirNone)

Note the $openform() method in this case has three parameters: the name of the form to be

opened, as well as the transition type and direction specified using one of the

kFormTransType.. and kFormTransDir.. constants.

See the Omnis Notation Reference manual or the Omnis Help (press F1) for a full

description of the remote task methods.

Whatôs New in Omnis Studio 5.1

20

iOS Form Events
iOS enabled remote forms report the following events:

evAnimationsComplete

The animation has completed

Parameters

pEventCode The event code

evFormToTop

The remote form is about to become visible on the client

Parameters

pEventCode The event code

pScreenSize
A kSSZ... constant for the current screen

size on the client

evScreenOrientationChanged

The orientation of the screen displaying the form has

switched between portrait and landscape

Parameters

pEventCode The event code

pScreenSize
A kSSZ... constant for the current screen

size on the client

evSubFormToTop

An existing remote form, contained in a subform that has

$multipleclasses set to kTrue, is about to become visible

on the client

Parameters

pEventCode The event code

Note Context menu events (evExecuteContextMenu and evOpenContextMenu) are not

available to iOS enabled forms.

Events for iOS Components

The new iOS components have events which can be handled in the same way as with

previous Omnis applications using the On <event> command in the $event() method of the

component. However the event handling methods cannot be run in the client and must

therefore be executed on the Omnis Server. Events for each component are listed in their

respective section in the iOS Components section below.

Event Handling Methods

If you double-click on a component or the form background, the method editor will open

showing the event handling method for the component or form. In most cases, the On

<event> command is added to the method, allowing you to add your own code to handle

the event or multiple events.

 Creating Omnis Applications for iOS

 21

Enabling Events

You should remember to enable any events that you wish to report for any individual

component or the remote form itself by enabling the event in the $events property for the

component or form. If an event is not enabled in the $events property, it will not be

reported, even if you have added code to handle the event in the $event method of the

component or form.

To enable an event, select the component or form background, open the Property Manager

(press F6), and click on the $events property to open the event droplist. Select the event you

wish to report from the list of possible events for the component or form.

iOS Components
There are several new components for remote forms that you can use on iOS devices, and

many of them will be familiar to iPhone/iPad users. When the components are instantiated

on the device itself, the native iOS components are used. The following section lists all the

iOS specific components available for remote forms. In addition, you can use the Paged

Pane and Subform components for iOS forms.

Example Omnis iOS app

This release includes an Omnis iOS app that allows you to play an Anagram based word

game. The example app shows the features of some of the new iOS components, including

how you write Omnis code to control how they behave. Some of the following sections use

code snippets from the example application, which you can further examine in Omnis itself

looking at the comments to navigate around the app.

iActivity Control

iActivity provides an animated image to show some activity on the client,

for example, during a long list calculation or search operation. You assign

kTrue to the $animating property to display the animated image. The

$hidewhensstopped property controls if the control is hidden when

animation stops.

Whatôs New in Omnis Studio 5.1

22

The following method can be used to display the activity component, which could be called

or triggered by some event in your application.

Do $cinst.$objs.oActivity.$animating.$assign(kTrue)

Events

The iActivity control has no events.

iButton Control

The Button field responds to user clicks reported as the evClick event which can be handled

in the $event() method of the button. The button can display an icon, specified in the

$iconid property, and/or a single line of text. If you use an icon for the button, you must

specify the icon page for the icon in the $iconpages property of the remote form. In

addition, the icon must support Alpha.

Events

evClick a user generated click

The following method can be placed behind a button control, which,

in this case, allows the user to switch to another form.

; code behind Scores button

On evClick

 Calculate tLastPage as 'rfTitle' ;; Store this page so we can

come back here from the scores page

 Do $ct ask.$openform(

 'rfScoreboard',kFormTransTypeFlipLeft,kFormTransDirFromLeft)

iDateTime Control

The iDateTime component provides a ñspinnerò field to allow the end user to select dates

and/or times. You can assign a Date/Time instance variable to the $datename property of

the control to load the date/time selected by the user. The $pickerstyle property specifies

the style of the date time picker. The following image shows the default Date/Time picker

style showing the current date.

Events

evClick a user generated click

You can create an instance variable in your form called iDate with the Subtype óDate Time

D m yô and assign the variable to the $dataname property of the Datetime control. In the

 Creating Omnis Applications for iOS

 23

$construct() method of your form you can use the following method to assign todayôs date

to the variable.

Calculate iDate as #D

When the form is opened the Datetime control will display todayôs date. When the user

selects a different date, the selected date will be held in the iDate variable. For example,

you could ask the end user to select their date of birth and the following code would

calculate the end userôs age this year.

Calculate lAge as ddiff(kYear,iDate,#D)

Do $cinst.$showmessage(con('You are ',lAge,' years old this year.'))

iImageView Control

The iImageView comp can be used to display an image, either a TIFF, JPEG, GIF, PNG,

BMP, ICO, CUR, or XBM image. The control supports the drag and pinch gestures which

allow the end user to zoom into and move the image within the picture control.

The $dataname of the control must be set to a Binary variable containing the image data;

you cannot use an Omnis picture variable. Alternatively, the variable in $dataname can be

an integer which references an icon id to display an icon from one of the Omnis icon

datafiles or #ICONS in your library.

The iImageView control has the following properties:

Property Description

$getimagedata (runtime only) assign a kiImageSource... constant to this property to

instruct the client to prompt the user for an image from the specified

source, and send an evImageSelected event with the image data in

pImageData

$getrawimage (runtime only) assign a kiImageSource... constant to this property to

instruct the client to prompt the user for an image from the specified

source, and use the selected image to set $rawimage

$imagealign specifies where the image will be positioned when $noscale is kTrue

and the image entirely fits in the bounds of the control

$maxzoom The maximum zoom factor that can be applied to the current image by

the pinch gesture (1-16)

$rawimage if set, this raw PNG image is used instead of the databound object

Events

evImageSelected Sent to the control when the action requested by assigning

$getimagedata completes; the pImageData parameter contains

the binary image data selected by the user

Whatôs New in Omnis Studio 5.1

24

The following method can be placed behind a toolbar

control that allows the end user to select images from the

photo or camera library on their device. The $getimagedata

property must be assigned at runtime and can be used with

either kiImageSourcePhotoLibrary or

kiImageSourceCameraRoll to specify the image source.

; oPic is the image control, its dataname is

iPic which is a binary variable

On evClick

 Switch pToolbarButton ;; contains the tab

number clicked

 Case 1

 Do $cinst.$objs.oPic.$getimagedata.$assign(

 kiImageSourcePhotoLibrary) Returns #F

 Case 2

 Do $cinst.$objs.oPic.$getimagedata.$assign(

 kiImageSourceCameraRoll) Returns #F

 End Switch

 Do $cinst.$redraw()

The event method behind the image control loads the image held in pImageData and

assigns it to the iPic binary variable behind the image control.

On evImageSelected

 Calculate iPic as pImageData

 Do $cinst.$redraw()

iLabel Control

The iLabel control provides a simple text label.

Property Description

$adjustsfontsizetofitwidth if true, and $numberoflines is one, the object reduces the font

size in order to fit the text string into its bounding rectangle -

the property $minimumfontsize specifies the smallest value to

which the font size can be reduced

$linebreakmode a kiOSLineBreakMode... constant that specifies how lines

break when drawing text

$minimumfontsize the smallest value to which the font size can be reduced when

$adjustsfontsizetofitwidth is true and $numberoflines is one

$numberoflines the number of lines to be used to render the text. Zero means

use as many as necessary

Events

The iLabel control has no events.

 Creating Omnis Applications for iOS

 25

iMap Control

The iMap control provides a Google map interface to allow the end user to search for

locations or for you to show locations in your app. The end user can drag and pinch the

map image to change location and zoom of the map. Using the map control together with

other controls, such as the table control which could list a number of locations, you can

create very interactive location based Omnis apps.

You can display the map with a specified location, adding your own annotation pins and/or

popup location markers. The iMap control generates a number of events in response to the

end user touching the map or markers.

The iMap control has the following properties:

Property Description

$addannotation Adds pin annotations to the map. Assign a list with columns

(nLatitude, nLongitude, cTitle [,cDesc]). nLatitude and

nLongitude are degrees where positive numbers are North and

East, or negative numbers are South and West. cTitle is the title

for the marker with cDesc the optional description

$centermap Centers the map to the location. Assign a row with columns

(nLatitude, nLongitude, nSpan). nLatitude and nLongitude are

degrees where positive numbers are North and East or negative

numbers are South and West. nSpan is the number of degrees of

latitude and longitude to display

$desiredaccuracy A kiMapLocationAccuracy... constant which indicates the level

of accuracy you require for evHeadingChanged and

evLocationChanged events. Greater accuracy requires more time

and power

$enableheadingevents If true, heading events are sent from the device to the server (the

device must support heading events)

$enablelocationevents If true, location events are sent from the device to the server (the

device must support location events)

$headingfilter The minimum angular change (measured in degrees) required to

generate new heading events. Set this to zero to indicate no

filtering of evHeadingChanged events

$locationfilter The minimum distance (measured in meters) the device must

move laterally before another evLocationChanged event is

generated. Set this to zero to indicate no filtering of

evLocationChanged events

$mapcanscroll If true, the map can scroll

$mapcanzoom If true, the map can zoom

$maptype The type of map, a constant: kiMapTypeStandard,

kiMapTypeSatellite or kiMapTypeHybrid

Whatôs New in Omnis Studio 5.1

26

Property Description

$nexttouchevent If kTrue, the next touch on the map sends an evLocationTouch

event. pLongitude and pLatitude are sent as parameters

$showannotation Assign an annotation number (a 1-based index into the added

annotations) to show the callout bubble for the annotation; the

number usually relates to the order of the list you may have

assigned to $addannotation. If the annotation is not currently

visible, assigning this property has no effect

$showuserlocation If true, the map shows the users location

Events

The iMap control generates a number of events which you can detect in your event

handling methods for the control. Here is a summary of the events; the next section

provides full details and parameters for each event.

Ç evAnnotationTouched
Sent to the control when an annotation is touched

Ç evLocationChanged
Sent to the control when the location changes or when $enablelocationevents changes

value to kTrue. You can use $locationfilter to restrict the generation of

evLocationChanged events

Ç evHeadingChanged
Sent to the control when the heading changes or when $enableheadingevents changes

value to kTrue. You can use $headingfilter to restrict the generation of

evHeadingChanged events

Ç evLocationOrHeadingError
Sent to the control when an error occurs while trying to get location or heading data

Ç evLocationTouch
Sent to the control when $nexttouchevent is kTrue. After the event $nexttouchevent

will be set to kFalse

 Creating Omnis Applications for iOS

 27

Event Decription and parameters

evAnnotationTouched

Sent to the control when an annotation is touched

Parameters

pEventCode The event code

pAnnotationRow The row number of the annotation touched

evLocationChanged

Sent to the control when the location changes or when

$enablelocationevents changes value to kTrue. You can use

$locationfilter to restrict the generation of evLocationChanged

events

Parameters

pEventCode The event code

pLatitude
The latitude in degrees (positive for

North or negative for South)

pLongitude
The longitude in degrees (positive for

East or negative for West)

pAltitude The altitude in meters

pHorizontalAccuracy
The radius of uncertainty for the location,

measured in meters

pVerticalAccuracy

The accuracy of the altitude value in

meters. The value in the altitude property

could be plus or minus the value

indicated by this property. A negative

value indicates that the altitude value is

invalid

pSpeed
The instantaneous speed of the device in

meters per second

pCourse

The direction in which the device is

travelling. Course values are measured in

degrees starting at zero for due north and

continuing clockwise around the

compass. A negative value indicates that

the course value is invalid

pDescription
A text string representing the location or

heading data

Whatôs New in Omnis Studio 5.1

28

Event Decription and parameters

evHeadingChanged

Sent to the control when the heading changes or when

$enableheadingevents changes value to kTrue. You can use

$headingfilter to restrict the generation of evHeadingChanged

events

Parameters

pEventCode The event code

pMagneticHeading
The heading (measured in degrees) relative

to magnetic North

pTrueHeading
The heading (measured in degrees) relative

to true North

pHeadingAccuracy

The maximum deviation (measured in

degrees) between the reported heading and

the true geomagnetic heading. A negative

value means that the reported heading is

invalid

pDescription
A text string representing the location or

heading data

evLocationOr

 HeadingError

Sent to the control when an error occurs while trying to get

location or heading data

Parameters

pEventCode The event code

pSystemErrorCode

The system error code for the problem

encountered when getting location or

heading data. If the user has denied access

to the information, the control sets

$enablelocationevents and

$enableheadingevents to kFalse

pSystemErrorText

The system error text for the problem

encountered when getting location or

heading data

evLocationTouch

Sent to the control when $nexttouchevent is kTrue. After the

event $nexttouchevent will be set to kFalse

Parameters

pEventCode The event code

 Creating Omnis Applications for iOS

 29

Event Decription and parameters

pLatitude
The latitude in degrees (positive for North or

negative for South)

pLongitude
The longitude in degrees (positive for East or

negative for West)

iMap example

Consider an example app that contains an iMap control and a

table containing a number of locations, plus a toolbar for

adding markers. The contents of the table list could be built

on the fly or from a database, which is the case in this

example. The following code samples show how you can

build the location list and show each location with an

annotation pin.

The first task would be to create a database session, logon to

the database and build the list of locations. In this case the

locations are held in an Omnis database located in the same

folder as the app, and standard SQL code is used to build the

list based on the Markers table.

; $getAnnotation class met hod

; Instance var: iAnnList (List)

; oMap is the map control on the form

Do iAnnList.$clear()

Do $cinst.$objs.oMap.$addannotation.$assign('')

Do iStmt.$execdirect('SELECT * FROM Markers') Returns #F

Do iStmt.$fetch(iAnnList,kFetchAll)

Do $cinst.$objs.oMap .$addannotation.$assign(iAnnList)

Do $cinst.$redraw()

In thisexample, the iAnnList list variable has the following data.

Whatôs New in Omnis Studio 5.1

30

The list of annotation data is assigned to the map control by assigning it to its

$addannotation property. The data list must contain columns for the Latitude and Longitude

of the locations, a Title for the location marker, and an optional description. In our example

there is a fourth column containing the type of accessory marker to be displayed in the

location list on the form. The Latitude and Longitude parameters are specified as the

number of degrees where positive numbers are North and East, and negative numbers are

South and West.

In this example, the remote form startup code centers the map and displays the second pane

of a paged pane control showing the table of locations. The instance variable iCurrentPos is

a Row based on the schema table in our database (set the subtype of the variable to the

name of the schemaclass), with the columns Latitude, Longitude, and Span. The value of

iCurrentPos is hard coded in this case and assigned to the $centermap property of the map

control.

Do iCurrentPos.$assigncols(52.3,1.65,4)

Do $cinst.$objs.oMap.$centermap.$assign(iCurren tPos)

Calculate $cinst.$objs.oPane.$currentpage as 2

Do $cinst.$redraw()

In this example, event handling code has been placed

behind the table control, so when the end user taps the list

or the accessory icon either the corresponding marker is

displayed or the map is centered on the chosen location.

Here is the code behind the table control.

On evTableRowAccessoryClicked

 Do iCurrentPos.$assigncols(

 iAnnList.[pRow].Latitude,

 iAnnList.[pRow].Longitude,

 iSpan)

 Do $cinst.$objs.oMap.$centermap.$assign(

 i CurrentPos)

 Do $cinst.$redraw()

The evTableRowAccessoryClicked event returns the row

number of the Accessory icon the user has tapped in pRow

which can be used to get the Latitude and Longitude from

the list of annotations in iAnnList. The selected location in

iCurrentPos is then assigned to the $centermap property and the map is centered

automatically on the location.

The other event handling method behind the table is called when the end user taps a line in

the table.

On evTableRowClicked

 Do $cinst.$o bjs.oMap.$showannotation.$assign(pRow)

The evTableRowClicked event returns the row number the user has tapped in pRow which

can be assigned directly to the $showannotation property of the map control.

 Creating Omnis Applications for iOS

 31

You can add location markers to the map using the evLocationTouch event to detect where

the end user has tapped and adding the location returned in the event to the list of

annotations. In our example, a button is used to enable the touch event for the map control

and two fields are provided to allow the end user to enter a name and description. Here is

the method behind the óPlace Markerô button:

On evClick

 Calculate $cinst.$objs.oMap.$nexttouchevent as kTrue

 Calculate $cinst.$objs.oPane.$objs.bCancel.$enabled as kTrue

 Calculate $cobj.$enabled as kFalse

 Do $cinst.$setcurfield('eName')

The method enables the touch event, enables the cancel buttons, disables itself, and sets the

edit focus in the name field. Doing the latter will open the soft keyboard prompting the end

user to enter a name. When the end user has entered a name and description for the marker,

they can tap the device which will now trigger the evLocationTouch event. The event

handling method is placed behind the map control and has the following code:

On evLocationTouch

 Do iAnnList.$add(

 pLatitude,pLongitude,iName,

 iDesc,kiTableCellAccessoryDisclosureButton)

 Do iStmt.$execdirect('INSERT INTO Markers

 VALUES(@[pLatitude],@[pLongitude],@[iName],@[iDesc],2)')

 Returns #F

 Do $cinst.$getAnnotation() ;; builds the annotation list

The evLocationTouch event returns the selected location in the pLatitude and pLongitude

parameters which can be used to add the location to the list and insert the new location into

the database. The $getAnnotation() class method is called to rebuild the annotation list and

redraw the form including the new location marker.

iMultiLineEdit Control

The iMultiLineEdit control is a field for displaying multiple lines of text from the variable

specified in $dataname. The $autocapital property controls the capitalization of entered

text, while $autocorrect specifies if auto correction is used.

See the section on the iSingleLineEdit Control for further information about using edit

fields in remote forms.

Events

evAfter Sent to a field when it ceases to be the target field

evBefore Sent to a field when it becomes the target field

Whatôs New in Omnis Studio 5.1

32

iNavigationbar Control

The iNavigationbar component provides a standard iOS navigation bar which end users can

use to navigate to different parts of your application. The navigation bar has a main title in

the middle of the control and can have a left and/or right button which respond to user

clicks.

Property Description

$initiallefticonid if this is not zero, and $initiallefttext is empty, the first navigation

bar item has a button on the left hand side, displaying this icon

$initiallefttext if this is not empty, the first navigation bar item has a button on the

left hand side, displaying this text

$initiallefttype specifies the type of button displayed on the left hand side of the

fi rst navigation bar item

$initialrighticonid if set to kinavigationbarbuttontypeimage, the first navigation bar

item has a button on the right hand side, displaying this icon

$initialrighttext if set to kinavigationbarbuttontypetext, the first navigation bar item

has a button on the right hand side, displaying this text

$initialrighttype specifies the type of button displayed on the right hand side of the

first navigation bar item

$initialtitle is the initial title displayed on the navigation bar

$lefthidden if true, the left hand (back) button is hidden for the current

navigation bar stack item

$linkedobject the name of a subform or paged pane object on the current remote

form, used in conjunction with the $push property of the navbar. If

you use a subform, $multipleclasses for the subform must be ktrue

$navigationbarstyle specifies the appearance of the navigation bar

$push allows you to assign a 2-4 column row to the object referenced in

$linkedobject, col1 is the page number of a paged pane or

classname of the linked subform, col2 is the title for pushed item,

col3 is the text or icon id for right button (pass empty for no right

button), and col4 can be non-zero to hide the left button

$righticonid if this is not zero, and $righttext is empty, the current navigation bar

item has a button on the right hand side, displaying this icon

$righttext if this is not empty, the current navigation bar item has a button on

the right hand side, displaying this text

$righttype specifies the type of button displayed on the right hand side of the

current navigation bar item

$tintcolor the color of the navigation bar

$title the title for the current navigation bar stack item

 Creating Omnis Applications for iOS

 33

If you use icons in your navbar you must specify the icon page for the icon(s) in the

$iconpages property of the remote form.

Events

evClickInitialLeftButton The initial Left Button has been clicked

evClickRightButton The Right Button has been clicked

Example Navigation bar

Consider the Help form in the Anagrams example application. The Help form has a navbar

which allows the end user to select different help topics. The navbar itself is linked to a

paged pane field which displays the help topics on individual panes. The $linkedobject

property of the navbar specifies the name of the paged pane, in this case, called oPane.

The $construct() method of the Help form builds a list containing information about the

pages of the tab pane, including the arguments needed for the $push property of the navbar.

Do iPageList.$define(Page,Title,Rightbtn,HideLeft)

Do iPageList.$add(1,'Info','Manual Play',1)

Do iPageList.$add(2,'Manual Play','Anagram',0)

Do iPageList.$add(3,'Anagram','',0)

The navbar control itself is placed across the top of the form and its various properties

under the General and Appearance tabs in the Property Manager are set, as follows:

$events set to receive evClickRightButton events

$linkedobject set to oPane, the name of the paged pane

$push can only be assigned at runtime; see below

$initialtitle set to ñMainò

$initialrighttype set to kiNavigationbarButtonTypeText

$initialrighttext set to ñManual Playò

The $event() method traps a user click on the button on the navbar, and has the following

event code:

On evClickRightButton

 Do $cinst.$pushPage(iPage+1) ;; page number is incremented

and passed to the $pushPage method

The $pushPage method is a class method and gets the details for the new page from

iPageList (built in the $construct of the form, as above) and passes the details to the $push

property of the navbar.

Whatôs New in Omnis Studio 5.1

34

; pPage receives the page number

; lRow is local var of Row type

; iPage stores the current page number

Calculate lRow as iPageList.[pPage]

Do $cinst.$objs.oNav.$push.$assign(lRow)

Calculate iPage as pPage

The effect of the $push property is to change the pane number in the paged pane control

specified in the $linkedobject property; in the case of the example app, an initial click by

the end user will display the second pane in the Help form.

iPage Control

The iPage control links to a Paged pane on the remote form and allows

the end user to change the current page in the linked paged pane by

flicking or swiping over the page control. The paged pane to link to the

iPage control is specified in the $linkedobject property.

The iPage control also gives the end user a visual clue as to the current selected pane in the

linked page pane object, since the highlighted dot in the control changes to reflect the

current page in the linked paged pane (the screenshot shows page 3 selected).

Property Description

$currentpage the current page number

$linkedobject the name of a paged pane object on the current remote form that

links to the iPage control

$pagecount the number of pages

Events

evPageChanged The page has changed;

pValue = the new page

Paged Pane Control

The standard Omnis paged pane can be used in iOS-enabled remote forms. The paged pane

provides a very convenient method to show alternative fields or controls, or to break down

an entry form into more manageable parts whereby each pane contains a small number of

fields.

Several of the other iOS controls can link to a paged pane, by setting the controlôs

$linkedobject property to the name of the paged pane. You can link a paged pane to the

iNavigationbar, iPage, and iTabbar controls.

In addition to the standard paged pane properties, you can set $effect to select different

border effects for the control, and by setting $scrolltochangepage to kTrue the end user is

able to can change the current page simply by flicking or wiping horizontally across the

paged pane.

 Creating Omnis Applications for iOS

 35

iProgress Control

The iProgress control lets you indicate the progress

of an operation such as a complex search,

calculation, or loop. The $progressstyle sets the style of the progress bar. The $min and

$max properties specify the maximum and minimum values for the progress range, while

$val is the current value in the progress range (between $min and $max).

Events

evClick a user generated click

The following method could be placed behind a button to trigger the progress control, but

could equally be triggered by another event in your code.

; the $min and $max of óprogressô are set to 0 and 1000

On evClick

 For count from 1 to 1000 step 1

 Do $cinst.$o bjs.progress.$val.$assign(count)

 End For

 Do $cinst.$showmessage('Done!')

iSearchBar Control

The iSearchBar component provides an entry field in the search bar style. The text entered

by the user is held in the variable specified in $dataname and can be used as the source for a

search.

Property Description

$autocapital controls the capitalization of text entered

$autocorrect controls how the iOS device corrects the entered text

$contenttip the text displayed in the field when it is empty, to help the user

understand what content should be entered

$dataname the data name of the object

$prompt the text shown above search bar; increase the height of the searchbar

control itself to make the text visible

$searchbarstyle sets the visual style of the searchbar (only applies if $tintcolor is

kColorDefault)

$showsbookmark enables the bookmark icon in the search bar; note you can detect a

click on the bookmark with evBookmarkClick which must be

enabled in the $events property

$showscancel enables the cancel button in the search bar

$tintcolor the color of the search bar

Whatôs New in Omnis Studio 5.1

36

Events

evAfter Sent to a field when it ceases to be the target field

evBefore Sent to a field when it becomes the target field

evBookmarkClick The user has pressed the bookmark button

evClick a user generated click

The following Searchbar control works in conjunction with a Webview control to allow the

end user to browse web pages within your Omnis application. The $dataname of the

searchbar is set to iUrl, a simple Character instance variable.

The code in the $event() method for the Searchbar assigns the contents of the control held

in iUrl, along with a Webview command constant, to a row variable which is itself assigned

to the $execcommand property of the Webview control.

On evClick

 Do lCommand.$define('','')

 Calculate lCommand.1 as kiWebViewCommandLoadPage

 Calculate lCommand.2 as iUrl ;; the text in the Searchbar

 Do $cinst.$objs.oBrowser .$execcommand.$assign(lCommand)

 Do $cinst.$setcurfield('')

 Do $cinst.$redraw()

 Creating Omnis Applications for iOS

 37

iSegmented Control

The iSegmented component is similar to the tabbar in so far as it provides a number of

buttons or segments for the user to click. You can detect which segment the user has

clicked on and execute the appropriate code.

Property Description

$currentsegment the number (1 - $segmentcount) of the current segment (this

specifies the segment affected by segment specific properties);

$movesegment moves the segment by assigning a number in the range 1 to

$segmentcount, which changes $currentsegment to the assigned

number (not assignable in class notation)

$segmentcount the number of segments (must be at least one);

$segmentenabled if true, the segment is enabled and generates a click event when

the user presses it;

$segmenticonid the icon displayed on the current segment, if $segmenttext is not

empty, $segmenticonid is ignored;

$segmentlist a list containing segment-specific properties, one line per

segment;

$segmentstyle specifies the appearance of the control;

$segmenttext the text displayed on the current segment, if this is not empty,

$segmenticonid is ignored;

$segmentwidth the width of the segment in pixels, otherwise if zero, the control

automatically sizes the segment;

$selectedsegment the number (1 - $segmentcount) of the currently selected

segment, or zero if no segment is selected (only relevant if

$showselectedsegment is kTrue);

$showselectedsegment if true, the control highlights the selected segment

($selectedsegment specifies the highlighted segment);

$tintcolor the color of the control (only applies if $segmentstyle is

kiSegmentStyleBar and $tintcolor is not kColorDefault);

If you use icons in the segmented control you must specify the icon page for the icon(s) in

the $iconpages property of the remote form.

Events

evClick a user generated click;

pSegment = the number of the segment clicked

Whatôs New in Omnis Studio 5.1

38

The following Segmented control has been configured to work in conjunction with a

Webview control to provide a web browser in a remote form.

The Segmented control has the following properties set:

$event evClick is enabled

$segmentstyle set to kiSegmentStyleBar

$selectedsegment set to 0 for no selection

$segmentcount is 4

$currentsegment you have to set this to 1 to 4 to assign an icon or text to

each segment; in the above example, icons 3002, 3003,

1614, and text óHOMEô are used respectively

See the iWebView section for the example code used behind such a Segmented control.

iSingleLineEdit Control

The SingleLine Edit Field is for displaying or receiving a single line of text from the

variable specified in $dataname. In most cases the variable will be character based, but the

single-line edit can display numeric data; see below. Like all remote form fields, the

variable specified in $dataname for the edit field must be an instance variable.

Property Description

$adjustsfontsizetofitwidth if true, the object reduces the font size in order to fit the text

string into its bounding rectangle, while $minimumfontsize is

the smallest value to which the font size can be reduced when

$adjustsfontsizetofitwidth is true

$autocapital controls the capitalization of text entered

$autocorrect controls how the iOS device corrects the entered text

$clearbuttonmode controls when the clear button is displayed in the field which

allows the end user to clear any data in the field; this is one of

the kiOSViewModeé constants

$contenttip the text displayed in the field when it is empty, to help the

user understand what content should be entered

$effect The effect or border style of the edit field; for iOS this is one

of the kiOSBorderé constants

$dataname the data name of the object

$securetextentry if true, each character is hidden which is useful for password

text entry

 Creating Omnis Applications for iOS

 39

Events

Single line edit fields do not report any special events other than the standard evAfter,

evBefore, and evClick.

evAfter Sent to a field when it ceases to be the target field

evBefore Sent to a field when it becomes the target field

evClick a user generated click

Using Edit fields with the keyboard

When a remote form containing edit fields is opened

on the client, the edit focus is placed in the first

available edit field and the built-in alpha-numeric

keyboard is opened automatically ready for data entry.

The end user can use all the editing features they

would expect on an iOS device within an Omnis entry

field, such as clicking and/or dragging to select text,

copying & pasting text, predictive text, and so on.

For a single line edit field, you can set the

$clearbuttonmode property to

kiOSViewModeWhileEditing to enable the Cancel

button during editing to allow the end user to clear the

contents of the field (as shown).

Setting the edit focus

The edit focus is placed in the first available edit field

according to the values of the $order property for each

field in the form. You can specify that a field is the

first edit field by changing its $order property to 1;

note the $order values of the other fields in the form are reordered accordingly when you

change the $order for a field. Alternatively, you can use the $setcurfield() method to

specify which edit field gets the focus; this can be done in the $construct() of the form to

put the edit focus in a particular field when the form is opened. For example, the following

method will put the edit focus in the FirstName field and open the keyboard for data entry

when the form is opened.

; $construct of the form

; $cinst is the remote form instance

Do $cinst.$setcurfield(' FirstName ')

You can cancel the edit focus, and by doing so close the soft keyboard, by setting the

current field in the form to null. To do this you can use the following method:

Do $cinst.$setcurfield('')

When the end user taps the óDoneô button in the keyboard an evClick event is generated, so

you can use the above code in the $event() method for a field to cancel the edit focus and

close the keyboard.

Whatôs New in Omnis Studio 5.1

40

Displaying Numbers

Single line edit fields can display number variables as well as character based data. If an

integer variable is assigned to an edit field (in $dataname), the field will use a numeric

keyboard when it gets the edit focus.

If a numeric variable allows decimal points, such as Number 2dp, the standard keyboard is

opened, but on the numeric page, and will only allow the input of numbers and the decimal

point character (in this case, no other characters can be inserted).

iSlider Control

The Slider is a convenient and intuitive way for the end

user to select a value or setting, such as a numeric

value or percentage, since the position of the button corresponds to the current value of the

variable assigned to the control.

The $sliderstyle property sets the style of the slider bar. The $min and $max properties

specify the minimum and maximum values for the slider range, while $val is the current

value in the slider range (between $min and $max). When the end user drags the thumb

button and the slider is changed, the evSliderChanged event is triggered with pValue

containing the current value.

Events

evSliderChanged The slider value has changed;

with pValue = the new value

The following method can be placed behind a slider control to set the $alpha property of an

image field called oPic.

On evSliderChanged

 Calculate $cinst.$objs.oPic.$alpha as pValue

iSwitch Control

The Switch component provides an ON / OFF button. The instance

variable specified in $dataname will be set to value=1when the end

user pushes the switch on, and set to zero when the switch is turned

off.

Events

evClick a user generated click

 Creating Omnis Applications for iOS

 41

The following method can be placed behind the Switch component to trap whether the

switch is on or off and run some code as appropriate.

On evClick

 Switch iSwitch ;; iSwitch (Short int)

 Case 1 ;; switch is on

 ; Do something

 Default ;; switch is off

 ; Do something else

 End Switch

iTabbar Control

The Tabbar component allows the user to select a tab which can correspond to a specific

option in your application. You can specify the number of buttons on the tabbar, while for

each button you can use one of the standard types or specify your own. The tabbar can be

linked to a paged pane or subform so when different buttons are clicked the pane or

subform can be changed accordingly. You can also allow the end user to reconfigure or

reorder the buttons in the tabbar.

Property Description

$config the tabbar configuration specified by the user, which allows you to store

the configuration set by the user (using the value of the pConfig event

parameter in the evConfigDone event)

$currentobject the number of the current button in the range 1 - $objectcount; setting

this in design mode allows you to set the button specific properties for

each button

$linkedobject name of a subform or paged pane to link to the tabbar. If this is not

empty, when the user selects an object, it sets $classname or

$currentpage for the linked object to $objectlink instead of generating a

click event

$moveobject moves the button by assigning a number in the range 1 to $objectcount,

which changes $currentobject to the assigned number; this provides a

convenient method for you to move buttons (in design mode only)

$objectbadge the badge text used to mark the item; this can be useful for adding

information to the button to help the user make a selection

$objectcount the number of buttons on the tabbar (this must be at least one)

$objectenabled if true, the button is enabled and generates a click event when pressed

$objectflags a combination of the kiTabbarButtonFlagInitiallyVisible and

kiTabbarButtonFlagAlways constants that control when the tabbar

button is visible in its initial state prior to the user configuring the tabbar

$objecticonid the icon displayed on the current button (only significant if $objecttype

is kiTabbarButtonTypeUser)

Whatôs New in Omnis Studio 5.1

42

Property Description

$objectlink When the user selects this object, the object sets $classname or

$currentpage for the object to $objectlink; only significant if

$linkedobject is not empty

$objecttext the text displayed on the current button (only significant if $objecttype is

kiTabbarButtonTypeUser)

$objecttype the type of the button specified by one of the kiTabbarButtonType..

constants; to define your own tabbar button use

kiTabbarButtonTypeUser and set $objecttext and $objecticonid

$openconfig set this to kTrue to open a dialog for the user to customize or reorder the

buttons in the tabbar. On completion, evConfigDone is sent with the

new configuration in pConfig and invisible items in pMoreList. Changes

to screen orientation are disabled while the dialog is displayed

$selectedobject the number (1 - $objectcount) of the currently selected button, or zero if

no button is selected

Events

evClick a user generated click;

pTabbarButton = the number of the tabbar button clicked

evConfigDone pConfig = the new configuration of the tabbar specified by the user

which is a row containing button IDs in the new order

pMoreList = 2 column list; col1 is the icon ID, col2 the text

Button Icons

For most tabbar buttons you can use the standard button types available in $objecttype and

specified using one of the kiTabbarButtonType.. constants. You can however specify your

own tabbar buttons using the kiTabbarButtonTypeUser object type. In this case, the

$objecttext and $objecticonid properties are enabled which allow you to define your own

button, including your own text and icon. Note that you must use icons that include Alpha

properties for tabbar buttons, since the alpha values in the icon image are used to render the

button image, and in this special case, the color values in the image are ignored.

If you use icons from an icon datafile or #ICONS in your tabbar, you must specify the icon

page for the icon(s) in the $iconpages property of the remote form.

Tabbar position and size

In addition to setting the tabbar specific properties, you can set the $edgefloat property of

the control to kEFposnTopToolbar or kEFposnBottomToolbar to position and ñfitò the

control to the top or bottom of the form, respectively.

Most of the standard tabbar buttons require a minimum height to display the icon and text

correctly. In this case, you will find that you cannot resize the height of the tabbar below 49

pixels, although you can set $height of the control if you need to specify a height.

 Creating Omnis Applications for iOS

 43

Tabbar configuration

When you create the tabbar control in development mode, the configuration or order of the

tabbar buttons is stored in the object, but at runtime you can allow the end user to change

the order of the buttons. By setting the $openconfig property to kTrue, you can open a

configuration dialog on the client, allowing the end user to drag the buttons to reorder them.

The following method could be placed behind a standard button to open the configuration

dialog:

On evClick

 Do $cinst.$objs.oTabBar.$openconfig.$assign(kTrue)

When the end user has finished reordering the tabbar and clicked the Done button, the

evConfigDone event is sent to the tabbar with the new configuration in pConfig, which is a

comma-separated row containing the button numbers in the new order.

You can save the new configuration into the $config of the tabbar using the following

method placed behind the tabbar itself:

On evConfigDone

 Calculate $cinst.$objs.oTabBa r .$config as pConfig

If you wish to store the new configuration permanently you will need to store the new

values returned in pConfig onto the server, together with the ID of the device, and load it

when the individual client device reconnects. See the Getting App and Device Information

section earlier in this document.

Example Tabbar

Consider the Scoreboard remote form in the Anagrams example application. A tabbar is

used to allow the end user to select which set of scores to display in the scoreboard.

The $objectcount property is set to 7 to display seven tabs, with a text value for each tab

specified in $objecttext; you have to set $currentobject to edit the properties of each tab.

The $objecttype property controls the type or style of each button in the tabbar, and in this

case each tab is set to kiTabbarButtonTypeUser which means the button is user defined.

Many of the other types provide a predetermined button or icon for specific purposes.

Whatôs New in Omnis Studio 5.1

44

The tabbar reports an evClick with pTabbarButton containing the number of the clicked tab

which you can use to trigger an action depending on the code in the $event() method for the

control. For example, in the Anagrams example app the tab number is used to return a list

of scores for the selected number of letters.

; contains instance vars iList (list), iPath (Char)

; iSess (Object based on OMSQLSESS), iStmt (Object no subtype)

On evClick

 Do iList.$clear()

 Do iSess.$logon(iPath,'','','ScoreSess') Returns #F

 Calculate lLetters as pTabbarButton+2

 ; pTabbarButton +2 since the tabbar starts on ó3 lettersô

 Do iStmt.$execdirect('Select * From Scores where

Letters=@[lLetters]') Returns #F

 Do iStmt.$fetch(iList,kFetchAll)

 Do iSess.$logoff()

 Do iList.$sort($ref.RealTime,kFalse) Returns #F ;; Sort into

time order although the time is not displayed

 Do $cinst.$redraw()

Note that when the data is fetched from the database, in this case an Omnis datafile, the

form needs to be redrawn using the $redraw() method, which is a method of a remote form

instance, referenced using $cinst. See below for details about the table control used on the

scoreboard remote form.

iTable Control

As well as providing a method for displaying lists of data, the iTable component can be

used for the main interface of your iOS app, since it can provide a hierarchical set of

options, complete with graphical symbols and icons, for users to navigate their way around

your application. Many iOS apps use a Table based interface in preference to the menu &

button based approach found in traditional desktop and web applications.

Property Description

$altcolor1 & $altcolor2 the alternating row colors of the table

$dataname the list variable name for the content of the table

$grouped set to kTrue to enable grouped mode

$iconcolumn the column number of the list column containing the icon id

of the icon to display for each row, or zero if icons are not

required

$label1bold / $label2bold sets label 1 or 2 to bold

$label1column the column number of the list column containing the first text

string to display for each row

$label1size / $label2size the font size of label 1 or 2

 Creating Omnis Applications for iOS

 45

Property Description

$label1textcolor /

$label2textcolor

 the text color of label 1 or 2

$label2column the column number of the list column containing the second

text string to display for each row, or zero if a second text

string is not required

$rowflagscolumn the column number of the list column containing flags which

control various options for the row, with each flagôs column

value a kiTableCellAccessory... constant, or zero if

accessories are not required

$rowht the default height of a row

$tablestyle the style of the table, a kiTableStyle... constant

If you use icons in the table you must specify the icon page for the icon(s) in the

$iconpages property of the remote form.

The iTable component is able to display both standard ñflatò lists and ñgroupedò lists.

Standard flat lists are defined as you would any other list, containing columns and simple

rows of data. In this case, you assign the flat list to the $dataname of the iTable component

and define how the data is interpreted by setting its various properties, including $tablestyle

to specify how the list determines the structure of the table (one of the kiTableStyle...

constants), $iconcolumn to specify the icon, $label1column and $label2column for column

labels, and $rowflagscolumn.

Events

evTableRowAccessoryClicked pRow = a reference to the list row clicked

pSection

evTableRowClicked pRow = a reference to the list row clicked

pSection

Consider the Scoreboard remote form in the Anagrams example application. A table is used

to display the scores for any given number of letters, selected by the user clicking on a

tabbar above the table.

Whatôs New in Omnis Studio 5.1

46

The iTable control itself has no methods behind it and it does not trap events since the data

is built by the end user clicking on the tabbar (see the iTabbar section). However, its visual

appearance has been specified using various General and Appearance properties in the

Property Manager, as follows:

$dataname Set to the list variable iList

$name Scoreboard is the simple name of the control

$altcolor1 / $altcolor2 Set to blue and black respectively

$label1column /

$label2column

Set to 1 and 2 respectively which correspond to the

first and second columns in the list

$tablestyle kiTableStyleDoubleTextHorizontal

In addition to the General and Appearance properties, you can set the properties of the text

labels and row background displayed in the table under the Text tab in the Property

Manager.

$font Courier New

$label1bold / $label2bold Both set to kTrue

$label1size/ $label2size Set to 14 and 12 respectively

$label1textcolor /

$label2textcolor

Set to white and red respectively

Note you can examine the $construct() method in the rfScoreboard remote form to see how

the table (list) data is built and displayed initially.

 Creating Omnis Applications for iOS

 47

Using Grouped Lists with iTable

Together with the simple two-column table using a flat list, you can create tables containing

multiple groups of data for more powerful or complex end-user selections. To create such a

table, you need to enable the $grouped property of the table and construct a list containing

the grouped structure. The different groups in your table are stored in separate lists and

added to the main list specified in $dataname and used to construct the table.

The image shows a typical grouped table;

each group has a heading and any number of

subheadings. Under each subheading, you

can display an icon and a description. The

end user can scroll the list and, in this

particular example, push on a line in the

table to select a new window or subform.

To create a grouped list in your code, like the one shown, you define and populate a flat list

containing all the lines you want to include in a single group, add that to the main list in its

first column, and add a name for the group in its second column. In the following method,

both óGroupô and óiMainListô are list variables.

; Instance var iMainList (List)

; Local vars: Group (List), Title, Text1, Text2, IconID (Chars) and

Flag (Number Short Int)

Do iMainList.$define(Group,Titl e)

; Group 1

Do Group.$define(Text1,Text2,IconID,Flag) ;; Column order as

defined in 'Appearance' tab

Do Group.$add('WebView','Internet

browser',k32x32+2174,kiTableCellAccessoryDisclosureIndicator)

Do Group.$add('Pictures','Loading of pictures from your

device',k48x48+1711,kiTableCellAccessoryDisclosureIndicator)

Do iMainList.$add(Group,'Media') ;; Add this list to our main

list, and call the group 'Media'

; Group 2

Do Group.$define(Text1,Text2,IconID,Flag)

Do Group.$add('Entry Fields','Inputting te xt into entry

fields',k32x32+2115,kiTableCellAccessoryDisclosureIndicator)

Whatôs New in Omnis Studio 5.1

48

Do Group.$add('Table','Table to display a

list',k32x32+1603,kiTableCellAccessoryDisclosureIndicator)

Do Group.$add('Date Time','Using the Datetime

roller',k32x32+2108,kiTableCellAcc essoryDisclosureIndicator)

Do iMainList.$add(Group,'Data') ;; Add this list to our main

list, and call the group 'Data'

iMainList is assigned to $dataname of the table, and its $grouped property is set to kTrue.

iToolbar Control

The iToolbar provides a row of buttons to allow the end user to select an option in your

application. You must specify the properties for the toolbar control itself, and for each

button in turn by setting $currentobject.

Property Description

$events enable evClick to report user clicks

$tintcolor the color of the toolbar

$toolbarstyle specifies the appearance of the toolbar

The button properties are as follows.

Property Description

$currentobject the number (1 - $objectcount) of the current button (this specifies the

button affected by button specific properties)

$moveobject moves the button by assigning a number in the range 1 to $objectcount,

which changes $currentobject to the assigned number (not assignable in

class notation)

$objectcount the number of toolbar buttons (this must be at least one)

$objectenabled if true, enables the button and generates a click event when the user

presses it

$objecticonid the icon for the current button (only significant if $objecttype is

kiToolbarButtonTypeImage), the alpha values in the source image are

used to create the image, and opaque values are ignored

$objectselected if true, the object is the currently selected object in the group of

kiToolbarButtonTypeSegmented objects to which it belongs (ignored

unless $objecttype is kiToolbarButtonTypeSegmented)

$objectstyle specifies the style of the button (only significant if $objecttype is

kiToolbarButtonTypeText or kiToolbarButtonTypeImage)

$objecttext the text on the current button (only significant if $objecttype is

kiToolbarButtonTypeText or kiToolbarButtonTypeSegmented)

$objecttype indicates the type of the button

$objectwidth the width of the button in pixels, if zero, the control automatically sizes

the button (ignored unless $objecttype is kiToolbarButtonTypeText,

 Creating Omnis Applications for iOS

 49

Property Description

kiToolbarButtonTypeImage or kiToolbarButtonTypeFixedSpace)

If you use icons in your toolbar you must specify the icon page for the icon(s) in the

$iconpages property of the remote form.

Events

evClick a user generated click;

pToolbarButton = the number of the toolbar button clicked

The following toolbar has two buttons allowing the end user to select images from their

Photo Albums collection or Saved Photos folder.

The $event() method behind the toolbar can detect which button is clicked using the

pToolbarButton event parameter and act accordingly. For example, a toolbar with 3 buttons

could have the following code:

On evClick

 Switch pToolbarButton ;; contains th e number of the clicked button

 Case 1

 ; Do this

 Case 2

 ; or do this

 Case 3

 ; or this

 End Switch

 Do $cinst.$redraw()

Whatôs New in Omnis Studio 5.1

50

iWebView Control

The iWebView component allows you to display a web page and/or run some Javascript.

You can load or reload a web page, perform a Forward or Back web command, or run some

Javascript by assigning a 2 column row variable to $execcommand to execute a command.

Column 1of the row variable must contain an integer or a kiWebViewCommand... constant,

while column 2 has info specific to the command, as follows:

kiWebViewCommandLoadPage loads the page with the URL specified by column 2

of the row assigned to $execcommand. Sends

evResult when the page has loaded

kiWebViewCommandReloadPage reloads the current page displayed by the control.

Set column 2 of the row to an empty string. Sends

evResult when the page has reloaded

kiWebViewCommandForward navigates to the next URL in the sequence of

visited URLs. Set column 2 of the row to an empty

string. Sends evResult when the page has loaded

kiWebViewCommandBack navigates to the previous URL in the sequence of

visited URLs. Set column 2 of the row to an empty

string. Sends evResult when the page has loaded

kiWebViewCommandRunJavaScript runs the JavaScript specified in column 2 of the

row. Sends evResult when the script finishes

execution

When the page has loaded, reloaded, or the Javascript has executed, the control sends the

evResult event which contains the pResult parameter, a 2 column row containing the status

and result of the command executed.

 Creating Omnis Applications for iOS

 51

Events

The evResult event is sent to the iWebView control when the command assigned to

$execcommand finishes executing. The pResult parameter is a row variable, where column

1 contains the value of a kiWebViewStatus... constant (see below), and column 2 contains

either error information or the URL of the page that has been loaded or the result of running

the JavaScript.

kiWebViewStatusOk indicates the command completed successfully, for

kiWebViewCommandRunJavaScript, the result of

the script is in col2 of pResult, for all other

commands, the loaded URL is in col2 of pResult;

kiWebViewStatusLoadInProgress means the command could not be executed because

the control is currently loading content;

kiWebViewStatusLoadError means an error occurred during command execution,

column 2 of pResult contains a character string

which further describes the error;

kiWebViewStatusInvalidParameter means the parameter value (passed to the command

using column 2 of the value assigned to

$execcommand) is invalid;

kiWebViewStatusCannotExecute means the control cannot go forward or back to the

next or previous URL

The following remote form contains a iWebview control called oBrowser together with a

Searchbar and Segmented control to allow the user to view web pages within your Omnis

application.

Whatôs New in Omnis Studio 5.1

52

There is no specific code behind the oBrowser control, rather the code to load or search for

pages is behind the Segmented or Searchbar controls. The following code is placed in the

$event() method for the Segmented control; the method sets a row variable depending on

which segment was clicked and the contents of the row variable is assigned to the

$execcommand property of the oBrowser Webview control.

; lRow (Row var), Command (Short int), Value (Char)

On evClick

 Do lRow.$define(Command,Value)

 Calculate lRow.Value as ''

 Switch pSegment ;; the segment clicked

 Case 1 ;; Back Pressed

 Calculate lRow.Command a s kiWebViewCommandBack

 Case 2 ;; Forward Pressed

 Calculate lRow.Command as kiWebViewCommandForward

 Case 3 ;; Refresh Pressed

 Calculate lRow.Command as kiWebViewCommandReloadPage

 Case 4 ;; Home pressed

 Calculate lRow.Command as ki WebViewCommandLoadPage

 Calculate lRow.Value as 'http:// www.tigerlogic.com/omnis '

 End Switch

 Do $cinst.$objs.oBrowser.$execcommand.$assign(lRow)

 Do $cinst.$redraw()

Creating an Omnis iOS app
In order to test and deploy your application you need to create an iOS app which can be

installed on your own iOS device or an end-userôs device. This can only be done on a Mac

OS X computer using the tools from Apple. To get all the necessary tools, you must sign up

to the iOS Developer Program with Apple, at the following address:

Ç http://developer.apple.com

If you wish to deploy your applications onto iOS devices, you must sign up to one of the

paid options under the iOS Developer Program, as you will require the code signing

certificates and provisioning profiles available via the program. You can create and test

your applications using the iPad or iPhone simulator, which are available if you sign up to

the free version of the iOS Developer Program.

When you are ready to deploy your application you will need to consider which distribution

method within the iOS Developer Program is appropriate to your app and target market.

The following section describes how you can build your Omnis iOS app for testing on the

simulator or your iOS device itself.

http://developer.apple.com/

 Creating Omnis Applications for iOS

 53

Configuring Xcode

¶ Go to the Apple website and log into the iOS Developer Program

¶ Download and install the latest Xcode with the iOS SDK (which also provides you

with the iPhone/iPad simulator)

¶ Go to the Omnis website (www.tigerlogic.com/omnis) and download the

clientbuild.zip file

¶ Extract the contents of clientbuild.zip to your computer

¶ Locate the clientios.xcodeproj and open it in Xcode

For all builds, whatever the target, you should select ñDistributionò as the ñActive

Configurationò in the ñOverviewò droplist.

Creating a Simulator App

Use the óomnisios_simulatorô target in the clientbuild project to build a Simulator App. You

will have to setup the iOS app using the Settings section in the simulator itself as described

below. The app is placed in the ../clientbuild/build/Distribution-iossimulator folder.

You can sign up to the iOS Developer Program free of charge to create an app that you can

run on the simulator.

Creating a Device App for testing on your device

You must sign up to one of the paid options in the iOS Developer Program to create an app

that you can deploy to physical iOS devices. When you have signed up to the program you

can create your code signing certificate(s) and provisioning profile(s) which you will need

to create a device app.

Use the óomnisios_deviceô target in the clientbuild project to build an app for running on

your iOS device (rather than the simulator). The Omnis iOS application file is called

óOmnis.appô and is placed in the ../clientbuild/build/Distribution-iosdevice folder. This

must now be installed on the iOS device.

You will have to setup the iOS app using the Settings section on your device itself as

described below.

Note that the Simulator and Device targets contain a ñSettings.bundleò which will add an

Omnis entry in the ñSettingsò on your device; this is required to allow you to setup your

app for testing.

Whatôs New in Omnis Studio 5.1

54

Installing your Omnis iOS app on your device

Assuming you have created the óOmnis.appô file, you will need the iTunes application,

available to download from Apple, to install your iOS app onto your device for testing.

¶ Install iTunes, if you donôt already have it, from www.apple.com/itunes

¶ Connect your iOS device to your computer via a cradle or USB cable, and let it sync

with iTunes

¶ Locate your mobile provisioning profile and drop it onto your device in iTunes

¶ Locate your Omnis.app which you built in the previous section, and drop it onto your

device in iTunes

¶ Then sync your iOS device with iTunes, and your Omnis app will be installed on the

device

Your Omnis iOS app should now be installed on your device, and the app should appear in

the list of apps on your device. However, before you can use it, you must configure the app.

Testing your Omnis iOS app
Having installed the Omnis iOS app onto your device you need to configure it to enable it

to connect to Omnis Studio and your Omnis library. For developing and testing your iOS

app, your device needs to connect to your local development computer running Omnis

Studio and your library.

Note that for end-user deployment, your iOS app needs to connect to the Omnis

Application Server which will usually be at a remote location: furthermore, clients are setup

using the config.xml settings file, not using the following method.

To setup your App for development and testing

¶ Click on ñSettingsò on your iOS device, and scroll down to the Omnis entry, and select

it

¶ Set Design Mode ñEnableò to óOnô

This allows you test your form on your local computer in the usual manner using the Test

Form option or Ctrl-T.

¶ In the óIP address:Portô field enter the IP address of the computer you are using for

development and the $serverport number of your local copy of Omnis Studio in the

format IP Address:Port, e.g: 193.456.82.311:5555

Note your iOS device needs to be able to connect to a wireless network that can

communicate with this IP address and port

 Creating Omnis Applications for iOS

 55

IP address

To obtain the IP address of your development computer under Mac OS X, open the

"System Preferences" dialog, click on "Network" under the ñInternet & Networkò section,

then select your network (Ethernet, AirPort, etc) and click on the TCP/IP option.

Under Windows, you can run the ipconfig command at the command prompt.

Omnis Server Port setting

The Omnis Server port setting is in the main Omnis preferences ($root.$prefs). To view the

Omnis preferences, click on ñStudio 5.x.xò in the top left corner of the Studio Browser

window, and click on ñPrefsò to open the Omnis preferences in the Property Manager.

Click on $serverport to view or set the server port for your local copy of Omnis Studio. It

can be any integer number in the range 1 to 32767, but we advise you to use a four digit

number over 5000 to avoid any of the standard ports in use.

You can also set the Saved state delay in seconds here in the Settings file, but for initial

testing you are not required to set this.

Testing your iOS remote form

To test your iOS remote form, you can press Ctrl-T in Omnis when your remote form is the

top window, or you can Right-click on the background of the remote form and select ñTest

Formò.

IMPORTANT: In order for the Test Form option to work, the Omnis iOS client must be

open and running on your device. If the remote form and your device are setup correctly,

the remote form will open on your device.

Debugging your iOS app

As with any Omnis development, you can set breakpoints in your code and step through

any methods that you want to debug. So for example, you can set a breakpoint in your iOS

remote form and when the breakpoint is encountered method execution is halted and the

app is paused on the client. You can switch to Omnis on your development computer and

step through your code. When you have executed all the methods on the stack, execution is

passed back to the client.

Multi-tasking and form persistence

If you are running iOS 4.x and your device allows multi-tasking (see Appleôs web site for

details of which devices allow multi-tasking), your app will enter the background rather

than terminate when you press the Home button. In this case, when you start the app again

it will resume where it left off, because it is still running in the background; if a message

was being sent to the server when you pressed the home button, the app will resend it when

it comes back to the foreground.

If you are running an earlier version of iOS or if your device does not allow multi-tasking,

then pressing the home button will terminate the app.

Saved State

When you close the Omnis app on your device, as part of the terminate processing, the app

saves the exact state of the form, its controls and their data in a file on the device. At the

same time, Omnis retains the remote form instance on the Omnis Server (or in your local

Whatôs New in Omnis Studio 5.1

56

copy of Omnis during development). If you then re-open the Omnis app, the form is re-

instated at the same stage as when you closed the app. This ñsaved stateò stores the exact

state of the controls, any data you or the end user has entered, and so on, so when you

restart the client, the form appears exactly as when you closed the app. Remember that the

remote task instance on the server has timeout properties, which could mean that the server

instance has closed when the app eventually reopens.

Saved State timeout

You can set a timeout to control whether or not the current state of the remote form is saved

at all or for how long the state is saved. The timeout is an integer value in seconds. If it is

zero, the state of the remote form is not saved, and the application attempts to disconnect

when it is closed.

The saved state for a remote form contains the time at which it was saved. If the difference

between the time when the application restarts and the time in the saved state is greater than

or equal to the timeout, the application being restarted discards the saved state.

To set the timeout, you can use one of the following methods.

Ç For design mode testing, you can set the saved state timeout for the Omnis app in the

óSettingsô on the device.

Ç For a deployed application, the following member appears in the <Application>

element in config.xml:

<i PhoneSavedStateTimeout seconds="nnn"/>

Ç In your code, you can use the new $clientcommand method, as follows:

Do $cinst.$clientcommand("setsavedstatetimeout",row(timeout in

seconds))

The timeout in force (from the config file or set later by calling $clientcommand) when the

application saves the state is part of the saved state.

Deploying your Omnis iOS app
When you deploy your application to your target audience or market, the application needs

to start automatically. In other words, you want users to be able to open your app without

having to change any settings. In this case, a configuration file is included within your iOS

app which contains all the necessary settings to connect the client app to the Omnis Server

running your Omnis library. The ñSettings.bundleò available in the óSimulatorô and

óDeviceô targets is not present in the óDistributionô target which is used to create your

release application.

For information about setting up your Omnis Server, your Omnis application (library), and

Web Server for remote deployment of your Omnis iOS app, please refer to the Extending

Omnis manual, available to download from the Omnis website and on the Omnis product

DVD.

 Creating Omnis Applications for iOS

 57

Creating a Configuration file

You can create a configuration file for deployment using the óiOS Config Editorô available

from the óAdd Ons>>Web Client Toolsô option in the Tools menu. The dialog lets you

specify the name of your Omnis library, the name of the remote form, the name and

location of the Omnis Server, and so on and creates the correct structure for the file.

The following parameters are on the Settings tab of the editor:

Ç Title Bar Text
the text shown in the title bar on the device; the default name is Omnis Studio if you

leave this field blank.

Ç Disable Title Bar
option allows you to disable the title bar on the device;

Ç Portrait only
the default is off which means your app will respond to the device being tilted and the

orientation of your remote form will switch automatically; enabling this option will

only allow forms in Portrait mode

Ç Saved state timeout
specifies the time in seconds that the application ñsaved stateò will be stored, the

default is 300 seconds; setting this to zero means the saved state is not stored at all

Ç Awaiting Connection Message
the Message for when the application is waiting for a data connection, e.g. Waiting for

data connection

The Design Mode Server settings let you specify a server for testing your app against a

ólocalô server. You should leave these settings blank for end user deployment (for a

Distribution build) to ensure the app connects to your remote Omnis Server specified on the

Application tab.

Ç Server Address (Design/Test server only)

the IP address of the server or PC running the Omnis Server, which for testing can be a

server within your local network including your own PC running the development

version of Omnis Studio; note your iOS device needs to be able to connect to a

wireless network that can communicate with this IP address and port

Ç Port
the port number of the Omnis Server, which for testing can be your development copy

of Omnis

Whatôs New in Omnis Studio 5.1

58

The Application tab lets you specify the settings for your deployed application.

Ç Application Name
The application name

Ç Application Desc
The application description

Ç Web Server Address
specifies the address of the Web Server through which your iOS client application

connects to the Omnis Server; this can be a URL or IP-address:Port-number.

Ç Web Server Script
specifies the location of the Omnis web server plug-in on your web server, such as

omnisapi.dll for IIS servers; the server plug-in would typically be in the /cgi-bin,

/scripts, or /webapps folder depending on your web server and operating system, e.g.

/cgi-bin/omnisnph-cgi.exe.

As a special case, you can use /webclient in the script property to use the web server

built into Omnis itself, which may be sufficient to run low volume apps that are

accessed by a relatively small number of users at any one time.

Ç Omnis Server Port
the Port numer or IP-address:Port of the Omnis Server running your Omnis application

(library)

 Creating Omnis Applications for iOS

 59

Ç Omnis Library Name
The name of the Omnis library running on the Omnis Server

Ç Omnis Class Name
The name of the remote form class that clients connect to initially

The Parameters tab in the editor lets you add up to nine parameters to be passed, in a row

variable, to the $construct method in the remote task associated with the initial remote form

in your application. Leave these fields blank if no parameters are setup in your application.

When you have completed the settings in the editor, save the file using the default name

ñconfig.xmlò. The configuration file is an XML file which you need to place in the root of

the clientbuild folder.

The iOS Config editor allows you to load an existing config.xml to edit the file, or you can

edit the file directly using an XML or standard text editor. The configuration file has the

following structure, which closely corresponds to the information entered in the config

editor:

<?xml version="1.0" encoding="UTF - 8"?>

<OmnisMobileConfig>

 <WindowClass name="TIGERLOGICCORP_OMNISWM"/>

 <! -- leave WindowClass unchanged -- >

 <TitleBar disable="no" text=" Title bar text "/>

 <iPhone DesignModeServer address="" port=""/>

 <! -- iPhone DesignModeServer is for te st server only -- >

 <iPhone Orientation portraitOnly="no"/>

 <WaitingForDataConnection message="Waiting for a data

connection"/>

 <Application name=" Myapp" desc=" This is my app ">

 <ServerType unicode="yes"/>

 <! -- leave ServerType unchanged -- >

 <WebServer url=" www.tigerlogic.com "

 script=" /cgi - bin/nph - omniscgi.exe "/>

 <OmnisServer address=" 5555 " library=" Mylib " class="rfMain"/>

 <iPhoneSavedStateTimeout seconds=" 300 "/>

 <Parameter name="param1" value="value1"/>

 <! -- Add up to nine parameters fo r the application here -- >

 </Application>

</OmnisMobileConfig>

The WindowClass is the class name for application window and should remain unchanged.

Only one window with this name can exist for the entire client system.

TIGERLOGICCORP_OMNISWM is reserved for use by the Omnis client. The

ServerType specifies that the Omnis Server should be Unicode compatible, and for Omnis

Studio 5.x servers should be unchanged. Note the iPhoneDesignModeServer property is

for test servers only and should be empty for distribution builds.

Whatôs New in Omnis Studio 5.1

60

Creating a Device App for Distribution

Assuming you have signed up to the iOS Developer Program and received your code

signing certificate(s) and provisioning profile(s), you need to build your Omnis iOS app for

distribution. For information about building apps using the certificate and provisioning

profiles, please see the documentation available via the iOS Developer Program website.

Use the óomnisios_device_distributionô target in the clientbuild project to build an app for

deploying on end-user iOS devices. The Omnis iOS application file is called óOmnis.appô

and is placed in your ../clientbuild/build/Distribution-iosdevicedistribution folder.

Having created your Omnis iOS app you need to distribute it using one of the standard

distribution methods provided by Apple via the iOS Developer Program.

Troubleshooting
The following are possible problems when developing your Omnis iOS app.

When I press Ctrl-T, my App does not appear on my iOS device
a) Check that you have the Omnis app running on your iOS device. If you try to test your

form without the Omnis app running, you will get the message ñThere is no iOS client

connected to test the formò. The Omnis app must be open on your mobile device when you

press Ctrl-T in your development copy of Omnis Studio.

b) Check that you have installed the Omnis app on your device. Also check that you have

added the provisioning file.

c) If the Omnis app is open on your device, but your form still will not open, check the

Settings on your device are correct, including the IP Address:Port setting which should

point to your copy of Omnis.

The Omnis iOS app is open and running on my device, and the settings are correct,

but I still cannot connect to my Omnis app.
When you want to test a form, your iOS device must have an internet connection (run

Safari and check you can connect to the Internet) and your local development copy of

Omnis Studio and your library must be running. You must select your iOS-enabled remote

form in Omnis and press Ctrl-T to test your form.

When I set $designshowmobiletitle to false (to hide the title bar) a gray bar appears at

the bottom of my remote form.

You need to change the $height property of the remote form to take into account whether or

not the window title bar is visible. If you hide the title bar you need to add 20 pixels to the

$height of the form (for both Portrait and Landscape screen sizes/layouts as appropriate).

I have added an icon to a button (or some other component that accepts an icon), but

when I test the app on my device the icon does not appear.

You have to add the name of the icon page containing any icons that you have used in your

remote form to the $iconpages remote form property; the icon pages listed in $iconpages

are sent to the client so if the icon pages you have used are not listed, their icons will not be

displayed on the client.

 Amazon DAM

 61

My remote form is entirely covered with controls so I am unable to click on the

background to set the formôs properties. How can I select the form background in this

case?
To select the form, you can use the Field List (right-click anywhere on the form, open the

Field List and check the form name to open the Property Manager for the form), or if you

click on any individual component, then shift-click it to deselect it, the focus will be

returned to the form.

Amazon DAM
There is a new Omnis DAM, the Amazon DAM (DAMAZON), that allows you to access

the SimpleDB from Amazon Web Services LLC. According to Amazon, ñSimpleDB is a

highly available, scalable, and flexible non-relational data store that offloads the work of

database administration. Developers simply store and query data items via web services

requests, and Amazon SimpleDB does the rest.ò

For further information about Amazon SimpleDB, please refer to the Amazon SimpleDB

website:

Ç http://aws.amazon.com/simpledb

Including the Amazon SimpleDB Developers Guide:

Ç http://docs.amazonwebservices.com/AmazonSimpleDB/latest/DeveloperGuide/

This section also discusses various topics which differentiate cloud-based connectivity from

traditional RDBMSs and the impact this has on the various properties and methods.

Dependencies
The Amazon DAM has runtime dependencies on several other dynamic libraries which

must be present on your systemôs library search path before the DAM can be used. When a

DAMAZON session object is created, the DAM attempts to locate and resolve the symbols

it needs from each of the external libraries.

If one or more symbol references cannot be resolved, these are reported to the Omnis trace

log as warnings, $logon() is disabled and you should not attempt to call session or

statement methods, otherwise a crash may occur.

The additional files required by the Amazon DAM for each platform are as follows:

Windows

libcurl.dll (requires msvcr90.dll)

libeay32.dll (requires msvcrt.dll)

libxml2.dll (requires iconv.dll & zlib1.dll)

Mac OSX

libcurl.dylib (where libcurl.dylib -> /usr/lib/libcurl.4.dylib, for example)

libcrypto.dylib (where libcrypto.dylib -> /usr/lib/libcrypto.0.9.7.dylib, for example)

libxml2.dylib (where libxml2.dylib -> /usr/lib/libxml2.2.dylib, for example)

http://aws.amazon.com/simpledb
http://docs.amazonwebservices.com/AmazonSimpleDB/latest/DeveloperGuide/

Whatôs New in Omnis Studio 5.1

62

Linux

libcurl.so (/usr/lib/libcurl.so)

libcrypto.so (/usr/lib/libcrypto.so)

libxml2.so (/usr/lib/libxml2.so)

If these libraries are not present on your system, the appropriate package(s) may need to be

installed or alternatively, downloaded and compiled from source. The principal libraries

shown are all available under open source licence agreements.

For developers interested in downloading and compiling client libraries from source,

information about each of the projects can be obtained from:

libcurl: http://curl.haxx.se/

libxml2: http://xmlsoft.org/

libcrypto/libeay32 : http://www.openssl.org/ (Links accurate at time of publishing)

Binary releases of these libraries may also be available to download from these and other

sources.

Logging on to SimpleDB
To connect to SimpleDB, the endpoint required is supplied via the $logon() hostname

parameter. In the case of Amazon SimpleDB, the endpoint is ñsdb.amazonaws.comò or

ñsdb.eu-west-1.amazonaws.comò in Europe.

Your access key id and secret are supplied via the username and password parameters, for

example:

Do SessObj.$logon(ósdb.amazonaws.comô,ô AGIBJ5LOYFITD3BR7ô,ô

H/z6t3ARzuJL26uIE07 GTS1AkK+p5ô) Returns #F

For other databases, the endpoint may be specified using http syntax, for example:

Do SessObj.$logon(

óhttp://www.remoteserver.com/?ô,ôuser_1ô,ôpasswordô) Returns #F

If the hostname parameter is omitted, i.e. substituted with a comma, the DAM uses

sdb.amazonaws.com by default.

http://curl.haxx.se/
http://xmlsoft.org/
http://www.openssl.org/

 Amazon DAM

 63

Meta Data
SimpleDB does not provide information about tables, columns and indexes in the same way

as traditional relational databases. Instead, domains can be likened to tables; items can be

likened to rows and attributes can be likened to columns. This has an impact on the

behaviour of the following meta-data methods:

$tables() StatObj.$tables() returns a list of available domain names in the

TableOrView column of the result set. Other result columns can be ignored

as SimpleDB does not support views.

$columns() StatObj.$columns(cDomain) returns meta data information about the

specified domain. This information is specific to SimpleDB and is returned

via the DamInfoRow column of the result set. Other result columns can be

ignored.

$indexes() StatObj.$indexes() is not implemented since SimpleDB handles indexing

automatically.

The information returned by $columns() for a domain is summarised as follows:

Timestamp The date and time when metadata was calculated in Epoch

(UNIX) time.

ItemCount The number of all items in the domain.

AttributeNameCount The number of unique attribute names in the domain.

AttributeValueCount The number of all attribute name/value pairs in the domain.

ItemNamesSizeBytes The total size of all item names in the domain, in bytes.

AttributesValuesSizeBytes The total size of all attribute values, in bytes.

AttributeNamesSizeBytes The total size of all unique attribute names, in bytes.

SimpleDB attributes and multi-values
Unlike Relational databases, SimpleDB attributes support multiple values. For example:

Domain Item Attribute Value

Suits Gents Formal Suit Colour Navy

Suits Gents Formal Suit Colour Black

Suits Gents Formal Suit Colour Grey

In addition, SimpleDB effectively supports only a single data type: Character. All data

inserted into and retrieved from SimpleDB will be character data optionally encoded as

UTF-8 bytes. Once fetched into Omnis, data can be assigned to typed variables as required.

Such data will be automatically converted to the appropriate data type where possible.

Each item fetched from SimpleDB can potentially have a different number of attributes and

attribute names. This prevents the use of Omnis Schema classes with SimpleDB since these

Whatôs New in Omnis Studio 5.1

64

require rigid column names and types. When dragging a schema class onto a SimpleDB

session in the Omnis SQL Browser, all that can sensibly be achieved is to create a domain

with the supplied table name.

SimpleDB does not support SQL in the traditional sense. You cannot use $prepare() &

$execute() or $execdirect() to execute INSERT, UPDATE or DELETE statements as these

are not supported. Instead, these statement methods can be used only to execute SELECT

statements conforming to the SimpleDB SELECT syntax.

Creating a Domain
To manually create a domain (analogous to a table), use the StatObj.$createdomain()

method. For example:

Do StatObj.$createdomain(óProject810 ô) Returns #F

Inserting Data
To insert items and attributes into SimpleDB, use the StatObj.$putattrib() method.

Each call to $putattrib() inserts a new attribute-value pair into the specified domain item.

(There is no need to create the item before inserting an attribute, the item is created

implicitly). Since SimpleDB supports multiple attribute values, you can assign several

different values to the same attribute if required. Duplicate values are ignored. For example:

Do StatObj.$putattrib(óProject810 ô,ôMaterialsô,ôToolsô,ô13mm

Wrenchô) Returns #F

Do StatObj.$putattrib(óProject810 ô,ôMaterialsô,ôToolsô,ôQuick

release clamps ô) Returns #F

If many attributes are to be inserted, it may be preferable to assign the domain name to the

StatObj.$domain property and the item name to the StatObj.$item property. These

parameters can subsequently be omitted in calls to $putattrib()- and any of the other

statement methods discussed below. The above example becomes:

Do StatObj.$domain.$assign(óProject810 ô)

Do StatObj.$item.$assign(óMaterialsô)

Do StatObj.$putattrib(, ,ôToolsô,ô13mm Wrenchô) Returns #F

Do StatObj.$putattrib (, ,ôToolsô,ôQuick release clampsô) Returns #F

Deleting Data
To delete items, attributes and values from SimpleDB, use the StatObj.$delete() method.

Deleting Values

To delete a specific attribute value, the domain, item, attribute name and value should be

specified. For Example:

Do StatObj.$delete(óProject810 ô,ôMaterialsô,ôTimberô,ô50x50x2.4m

pseô) Returns #F

 Amazon DAM

 65

Deleting Attributes

To delete an attribute including all of its values, the domain, item and attribute name only

should be specified. For example:

Do StatObj.$delete(óProject810 ô,ôMaterialsô,ôTimberô) Returns #F

Deleting Items

To delete an entire item including all its attributes and values, the domain and item name

only should be specified. For example:

Do StatObj.$delete(óProject810 ô,ôMaterialsô) Returns #F

Deleting a Domain

StatObj.$delete() cannot be used to delete a domain. To do this- use

StatObj.$deletedomain(). This method should be used with caution as it will permanently

delete all items, attributes and values contained in the domain before removing the domain

itself. For example:

Do StatObj.$deletedomain(óProject810 ô) Returns #F

Replacing Data
Whereas $putattrib() is used to append new attributes and values, StatObj.$replaceattrib() is

used to replace all values for a specified attribute with the supplied single value. For

example:

Do StatObj.$replaceattrib (óSuitsô, ôGents Formal Suitô,ôColourô,ôNavy

onlyô) Returns #F

Fetching Data
The Amazon DAM uses Amazon SELECT statements to fetch multiple items. These are

issued using the statement objectôs $prepare(), $execute() and $execdirect() methods in a

similar way to traditional SQL SELECT statements. The general form of a SimpleDB

SELECT statement is as follows:

select output_list from domain_name [where expression]

[sort_instructions][limit limit]

The output_list can be:

Ç * (all attributes)

Ç itemName() (the item names only)

Ç count(*)

Ç An explicit list of attributes (attribute1,..., attributeN)

For further information on the SELECT statement syntax, please refer to Amazon

SimpleDB Developer Guide.

Items in the result set are returned one row-at-a-time. StatObj.$resultspending indicates

whether there is a further item each time a call to StatObj.$fetch() is made and

StatObj.$itemcount is initially set to the number of items in the response. The destination

list or row variable is automatically redefined each time $fetch() is called. For example:

Whatôs New in Omnis Studio 5.1

66

Do StatObj.$execdirect(óselect * from Suits where stocklevel > 1ô)

Returns #F

Repeat

 Do StatObj.$fetch(lvRow)

 é

Until StatObj.$resultspending = kFalse

Retrieving an Item

You can retrieve all attributes for a specific item using the StatObj.$getall() method. The

result set (a single row) generated by this call is returned using $fetch(). For example:

Do StatObj.$getall(óSuitsô,ôGents Suitsô) Returns #F

Do StatObj.$fetch(lvRow)

Retrieving Item Names

You can retrieve the names of items contained within a domain by calling the

StatObj.$getitems() method. The result is returned as a single item containing a single

attribute. The item names will be returned either as a comma-separated list or as a single

column list- as dictated by the $attribcsv property.

A SELECT where-clause may be optionally specified if required, in which case only the

names of items which satisfy the expression will be returned. For example:

Do StatObj.$getitems(, òwhere Colour like óRed%ôò) Returns #F

Do StatObj.$fetch(lvItems)

Retrieving an Attribute

You can retrieve the contents of a specific attribute using the StatObj.$getattrib() method.

The result set (a single row containing a single column) generated by this call is also

returned using $fetch(). For example:

Do StatObj.$getattrib(óProject810ô,ôMaterialsô,ôToolsô) Returns #F

Do StatObj.$fetch(lvRow)

Handling Multiple Values

When fetching data, each row returned to Omnis represents one item from the specified

domain. Item attributes containing multiple values are handled in one of two ways; either as

single-column lists or as comma-separated values as dictated by the StatObj.$attribcsv

property.

When $attribcsv is set to kTrue (the default), rows fetched from SimpleDB will be defined

with Character columns. Attributes (columns) with multiple values will be returned as a

string of comma-separated values.

When $attribcsv is set to kFalse, rows fetched from SimpleDB will contain single-column

lists in each column. Each single-column list will contain one row for each attribute value.

Handling Multiple Attributes

You can put, delete and replace several attribute values at once using the

StatObj.$putmany(), StatObj.$deletemany() and StatObj.$replacemany() methods. The

attribute-value pairs to be processed are supplied via a list variable defined with two

 Amazon DAM

 67

character columns. Column 1 contains the attribute names, column 2 contains the

corresponding values. For example:

Do myList.$define(lvChar1, lvChar2)

Do myList.$add(óToolsô,ôPosidrive screwdriverô)

Do myList.$add(óToolsô,ôMetal hammerô)

Do myList.$add(óChargesô,ô1İ hours labourô)

Do StatObj.$putmany(, , myList) Returns #F

You can retrieve the values of multiple attributes using the StatObj.$getmany() method.

The attribute names to be retrieved are supplied via a single-column list, for example:

Do myList.$define(lvChar1)

Do myList.$add(óToolsô)

Do myList.$add(óMaterials)

Do myList.$add(óChargesô)

Do StatObj.$ get many(, , myList) Returns #F

Each subsequent call to $fetch() returns a row containing separate attribute- either as a

comma-separated-value or as a single column list, as dictated by $attribcsv.

Handling Multiple Items

When executing queries, the StatObj.$itemcount property is set to the number of items in

the response- implying that each call to $fetch() retrieves one item.

When the response contains only attribute values, $itemcount will be set to zero.

Handling Multiple Requests

The SimpleDB DAM uses the transaction management features of the DAM interface to

allow multiple requests to be executed as a combined batch of requests. To enable multiple-

execution, the SessObj.$transactionmode property should set to kSessionTranManual.

In this mode, actions such as $createdomain(), $putattrib(), $getattrib(), $replacemany() and

$execdirect() are accepted unconditionally into a queue. Nothing is sent to or received from

the database until a SessObj.$commit() is executed, at which point each request is

submitted in turn.

Unlike single request execution, every multiple request generates a response. Although

actions to put, create, replace and delete attributes will return empty responses, this enables

any errors and execution information associated with each action to be returned. For

example:

Do cSess.$begin()

Do cStat.$putattrib(,,'Materials','White Paint ') Returns #F

Do cStat.$putattrib(,,'Materials',ôCement 25Kgô) Returns #F

Do cStat.$replacemany(,,lvAttribList) Returns #F

Do cStat.$execdirect(óselect * from Project810 ') Returns #F

Do cSess.$commit() Returns #F

Whatôs New in Omnis Studio 5.1

68

Handling Multiple Responses

When in manual transaction mode, each call to $commit() generates one or more responses.

The number of responses available is returned via the SessObj.$responses property.

When $commit() is executed, StatObj.$itemcount and StatObj.$columncount are set to

reflect the number of items and attributes in the initial response.

Items/attributes from the response are then retrieved using one or more calls to $fetch().

When all items/attributes from the current response have been retrieved, the

StatObj.$endofresponse property is set to kTrue at which point, $itemcount and

$columncount are also set to reflect the next response.

When fetching an empty response, note that $endofresponse will effectively remain set to

kTrue. If the corresponding action generated an error, then StatObj.$nativeerrorcode and

StatObj.$nativeerrortext will be set accordingly. Otherwise, the empty response (and empty

row) can be discarded.

When all responses have been retrieved, the $resultspending property is set to kFalse,

otherwise $resultspending remains set the kTrue while there are still responses waiting.

It is safe to abandon and/or replace multiple requests before executing them by simply

calling SessObj.$begin() or changing the transaction mode back to kSessionTranAutomatic.

You can also discard pending responses in this way.

$rollback() is not supported by the SimpleDB DAM- this has no effect.

Machine Utilization
Amazon SimpleDB measures usage of remote resources (and hence the charge it imposes

on the end-user) in terms of ñbox usageò. Each action sent to the database incurs a box

usage- quoted as a decimal fraction of one hour. StatObj.$boxusage returns the box usage

for each action which generates a response.

The session object also has a $boxusage property which accumulates a total box usage for

the open connection. When retrieving multiple responses, the box usage for each response

is received (and added) in turn.

$boxusage may not be supported by all Simple databases in which case, the value remains

set to zero.

Read Consistency
Amazon SimpleDB supports two types of read consistency, defined as follows:

Ç Eventually Consistent Reads
the eventual consistency option maximizes your read performance (in terms of low

latency and high throughput). However, an eventually consistent read (using Select or

GetAttributes) might not reflect the results of a recently completed write (using

PutAttributes, BatchPutAttributes, DeleteAttributes). Consistency across all copies of

data is usually reached within a second; repeating a read after a short time should

return the updated data.

 Amazon DAM

 69

Ç Consistent Reads
in addition to eventual consistency, Amazon SimpleDB also gives you the flexibility

and control to request a consistent read if your application, or an element of your

application, requires it. A consistent read (using Select or GetAttributes with

ConsistentRead=true) returns a result that reflects all writes that received a successful

response prior to the read.

The Amazon DAM implements this functionality using the $consistentread session

property. When set to kFalse (the default setting), the eventual consistency option is used.

When set to kTrue, all $getattrib() and SELECT statement results are fetched using

consistent reads.

Conditional Puts and Deletes
The PutAttributes and DeleteAttributes API calls used by Amazon SimpleDB support

conditional put and delete operations which enable you to insert, replace or delete values

for one or more attributes of an item if the existing value of an attribute matches the value

you specify. If the value does not match or is not present, the update is rejected.

Conditional Puts/Deletes are useful for preventing lost updates when different sources write

concurrently to the same item.

The Amazon DAM implements this functionality using the $whereclause statement

property. This property affects all put, replace and delete attribute calls and accepts a SQL-

style where clause of the form:

ñwhere <name> [= <value>] [exists|does not exist]ò

<name> and <value> can be literal values; in which case they must be double-quoted, or

bind variables. Double quotes inside literal values should be escaped using \ò. For example:

Do cStat.$whereclause.$assign(ówhere ñColorò = ñLight Brownòô)

Do cStat.$whereclause.$assign(ówhere ñUndoò does not existô)

Do cStat.$whereclause.$assign(ówhere ñProject \ òX\ òò = @[lvChar]ô)

Once bound, variable values should be assigned before each call to $putattrib(), $delete(),

etc:

Do cStat.$whereclause.$assign(ówhere ñNameò = @[lvChar]ô)

Calculate lvChar as ñBrookesò

Do cStat.$putattrib(óStockDBô,ôSupplier1ô,ôFrequencyô,ôDailyô)

Returns #F

Calculate lvChar as ñRobinsonò

Do cStat.$delete(óStockDBô,ôSupplier2ô,ôFrequencyô) Returns #F

Currently, the exists condition may only be specified if both <name> and <value> attributes

are also specified. To use does not exist, only the <name> attribute should be specified.

Subsequent calls to put, replace or delete attributes return kFalse if the condition is not met.

$whereclause is not affected by $clear(). To remove the where condition for a statement

object; assign $whereclause to an empty string.

Whatôs New in Omnis Studio 5.1

70

Session Properties

Property Meaning

$boxusage Returns the cumulative total of remote machine resources consumed

since the session connected. Collects box-usages from statement

methods as well as box-usages from multiple actions (manual

transactions). Read-only.

$consistentread If set to kTrue, all read operations (e.g. $getattrib() & $fetch()) are

executed guaranteeing that the results of recent updates are seen

immediately. If set to kFalse, the default (faster) eventual consistency

option is used.

$responses Returns the number of responses generated by the last call to

$commit(). Applies to manual transaction mode only. Read-only.

$transactionmode Used to implement multiple request processing. When set to

kSessionTranAutomatic each request is sent to the database

immediately. When set to kSessionTranManual, requests and queued

until a $commit() is called.

Session Methods

Method Description

$begin() Initialises/clears multiple responses in preparation for execution of a new

batch of requests. Manual transaction mode only.

$commit() Executes a batch of statements and retrieves multiple responses from the

database. Manual transaction mode only.

 Amazon DAM

 71

Statement Properties

Property Meaning

$attribcsv If set to kTrue (the default), attributes with multiple values are returned

as comma-separated values, i.e. the fetched row will be defined with

character columns. If set to kFalse, attributes will be returned as single

column lists, i.e. the fetched row will contain a single column list in

each column.

$boxusage For statement methods which generate a response from the database,

$boxusage returns the portion of a machine hour used to complete a

particular request. See SessObj.$boxusage. Read-only.

$domain The current domain name. $domain will be used with various statement

methods if set. Statement methods which require a domain parameter

will assume this value if the method parameter is omitted.

$endofresponse Returns kTrue if the last item/attribute of the current response has been

fetched in which case, $boxcount, $itemcount and $columncount are set

to reflect the next response. Read-only.

$item The current item name. As with $domain, $item will be used with

various statement methods if set. Statement methods which require an

item name will assume this value if the method parameter is omitted.

When retrieving an item list from the database, $item is also set to the

name of the last item to be fetched.

$itemcount Returns the number of items in the current response. Returns zero if the

response contains only attribute information. Read-only.

$resultspending Returns kTrue while there are still items/attributes waiting to be fetched

from one or more responses. Read-only.

$whereclause Affects all put, replace and delete attribute methods. This property

accepts a SQL-style where clause of the form:

ñwhere <name> [= <value>] [exists|does not exist]ò

<name> and <value> can be literal values; in which case they must be

double-quoted, or bind variables. Double quotes inside literal values

should be escaped using \ò

Whatôs New in Omnis Studio 5.1

72

Statement Methods

Method Description

$createdomain() StatObj.$createdomain([cDomainName]) creates a domain with the

specified name. $createdomain() uses the value of StatObj.$domain if

the parameter is omitted in which case, $domain must be predefined.

Returns kTrue on success, kFalse otherwise.

$delete() StatObj.$delete([cDomain],[cItem],[cAttrib],[cValue]) deletes an item,

attribute or value from the specified domain. If cDomain or cItem are

omitted, the values of StatObj.$domain and StatObj.$item are assumed

in which case, $domain and $item must be predefined.

If cAttrib and cValue are omitted, the entire item is deleted.

If cValue is omitted, the specified attribute is deleted.

Otherwise, the specified value only is deleted from the attribute.

Returns kTrue on success, kFalse otherwise.

$deletedomain() StatObj.$deletedomain([cDomain]) deletes the specified domain and

all associated items/attributes. Warning: no further confirmation is

sought before the domain is permanently deleted. Returns kTrue on

success, kFalse otherwise.

$deletemany() StatObj.$deletemany([cDomain],[cItem],lAttribs) deletes one or more

values from the domain item. The attribute-value pairs are supplied via

lAttribs, which should be defined with two character columns. Column

1 contains the attribute name, Column 2 contains the corresponding

value to be removed. Returns kTrue on success, kFalse otherwise.

$getall() StatObj.$getall([cDomain],[cItem]) executes a query to return all

attributes belonging to the specified item. The result of the query is

retrieved by calling StatObj.$fetch(). Returns kTrue on success, kFalse

otherwise.

$getattrib() StatObj.$getattrib([cDomain],[cItem],cAttrib) executes a query to

retrieve the value(s) associated with the specified attribute. The result

of the query is retrieved by calling StatObj.$fetch(). Returns kTrue on

success, kFalse otherwise.

$getitems() StatObj.$getitems([cDomain],[cWhere]) executes a query to retrieve

the item names contained within the specified domain. If cWhere is

specified, the text is appended to the SELECT statement. The result of

the query is obtained by calling StatObj.$fetch(). Returns kTrue on

success, kFalse otherwise. $getitems() is not supported by all database

vendors.

$getmany() StatObj.$getmany([cDomain],[cItem],lAttribs) executes a query to

retrieve one or more named attributes from the domain item. The

attribute names are supplied via lAttribs, which should be defined with

 Amazon DAM

 73

Method Description

a single character column. The result of the query is retrieved by

calling StatObj.$fetch(). Returns kTrue on success, kFalse otherwise.

$putattrib() StatObj.$putattrib([cDomain],[cItem],cAttrib,cValue) inserts a new

attribute. If cAttrib already exists, the new value is appended to the

existing value(s), otherwise a new attribute-value pair is created.

Returns kTrue on success, kFalse otherwise.

$putmany() StatObj.$putmany([cDomain],[cItem],lAttribs) inserts one or more

values into the domain item. The attribute-value pairs are supplied via

lAttribs, which should be defined with two character columns. Column

1 contains the attribute name, Column 2 contains the corresponding

value. Returns kTrue on success, kFalse otherwise.

$replaceattrib() StatObj.$replaceattrib([cDomain],[cItem],cAttrib,cValue) replaces all

values for the specified attribute with the specified value. Existing

values are deleted. Returns kTrue on success, kFalse otherwise.

$replacemany() StatObj.$repalcemany([cDomain],[cItem],lAttribs) replaces one or

more attributes in the domain item. The attribute-value pairs are

supplied via lAttribs, which should be defined with two character

columns. Column 1 contains the attribute name, Column 2 contains the

new value. Existing values are deleted. Returns kTrue on success,

kFalse otherwise.

Implementation Notes

Bind Variables

Queries issued using $execute() and $execdirect() may contain bind variables- for example

in the where clause of the SELECT statement. The DAM inlines variable values into the

SQL text each time $execute() is called, placing single quotes around each value. Values

containing single quotes are escaped by adding a second single quote for each occurrence.

For example:

Calculate lVar as ñKatharine OôHaraò

Do StatObj.$execdirect(ñselect * from Customers where Name =

@[lVar]ò) Returns #F

 becomes

select * from Customers where Name = óKatharine OôôHaraô

Multiple Statement Objects

The SimpleDB API does not facilitate statement isolation- only session isolation. This

means that each session object may spawn only one statement object.

An attempt to spawn a second statement object will result in an error.

Whatôs New in Omnis Studio 5.1

74

Remote Procedures

SimpleDB does not support remote procedures, views or triggers. These are features of

traditional relational databases.

Binary Data

SimpleDB attributes support only character data of maximum length 1024 bytes and are not

suitable for storing binary data directly. A better approach (the intended approach) is that

attribute values be used to store URLs or unique identifiers for pictures, files and other

media which exist externally to the database.

Miscellaneous Enhancements
HTTP commands
The Map+ parameter has been added to the HTTPGet() and HTTPPost() commands. When

passed as kTrue (the default = kFalse), plus characters in CGI parameter names and values

in the CGI List are URL encoded using hex. (ST/FU/588)

The complete syntax for the commands is now as follows:

HTTPGet (host,uri [, cgilist,hdrlist,service | port,secure {Default

kFalse}, verify {Default kTrue}, map+ {Default kFalse}]) Returns

socket

and

HTTPPost (host,uri [, cgilist,hdrlist,service | port,secure {Default

kFalse}, verify {Default kTrue}, map+ {Default kFalse}]) Returns

socket

Apple Menu Hide Key String
The Apple + H key combination is now used in Mac OS X to hide the current top window

which is causing issues for Omnis applications that use this key combination for other

purposes; OS X is intercepting Apple + H and the key event is never passed to Omnis.

(ST/HI/1534)

The AppleMenuHideKey command has been added to the built-in strings in Omnis, so you

can edit this string to change the letter to activate the command. The new string is in the

format:

AppleMenuHideKey:H

You need to edit the string and change its last character. Setting the character to underscore

removes the shortcut. This shortcut is applied to both the óhide omnisô command and óhide

othersô in conjunction with the option key.

Remote Menu Lines
You can now set the text for a remote menu line to $st.id. The lookup occurs when the

menu is built on the client, before any event processing for the menu. (ST/WT/1623)

 Miscellaneous Enhancements

 75

Whatôs New in Omnis
Studio 5.0.1

Omnis Studio 5.0.1 provides support for Windows 7 and Mac OS X Snow Leopard

(version 10.6), together with a number of other enhancements, as follows.

Ç Windows 7 and Mac OS X
Studio 5.0.1 is fully compatible with Windows 7 and Mac OS X Snow Leopard

Ç Client commands
a new method called $clientcommand() allows you to execute various functions within

the Web Client including Yes/No messages

Ç Web content tips
content tips are now supported for single line and multi-line fields in remote form

Ç Vertically centered text
new properties for window fields that allow you to center text vertically in a field

Ç Tree lists
you can now use 32x32 or 48x48 icons for tree list nodes

Ç Managing Studio messages
new sys() functions allow you greater control of certain error messages

Ç Closing the Trace log
a new command gives you the ability to close the Trace log in the Omnis Runtime or

Server

Ç Security for Web commands
SSL has been added to the TCP commands

Ç Email authentication
CRAM-MD5 authentication support has been added to SMTPSend

Ç Server Load Sharing
You can now run the Load Sharing Process executable (omnislsp.exe) as a service

(Windows only)

Ç Omnis DataBridge
There have been a number of changes to how the Omnis DataBridge (ODB) works

under Windows

Whatôs New in Omnis Studio 5.0.1

76

Windows 7
Omnis Studio 5.0.1 fully supports Windows 7. A few enhancements have been made to

support the new platform, as follows.

Functions
There is a new function, iswindows7() to test for the new platform, plus there is a new

parameter for the isvista() function to test for a theme (these functions apply to both

Desktop and Web clients).

iswindows7()

iswindows7([themed=kfalse])

For themed = kFalse, returns true if the current operating system is Windows 7 or later; for

themed = kTrue, returns true if the current operating system is Windows 7 or later with a

themed appearance.

isvista()

isvista([themed=kfalse])

For themed = kFalse, returns true if the current operating system is Windows Vista or later;

for themed = kTrue, returns true if the current operating system is Windows Vista or later

with a themed appearance.

Tree lists and Icon arrays
Ctrl-click now deselects the clicked entry for multiple select tree lists and icon arrays.

Toolbars
The default toolbar background and text color have been changed to match the operating

system.

Mac OS X
Omnis Studio 5.0.1 fully supports Mac OS X Snow Leopard.

Functions
There is a new function to test for Snow Leopard (this applies to both Desktop and Web

clients).

issnowleopard()

issnowleopard() ï no parameters

Returns true if the current operating system is Mac OS X Snow Leopard (version 10.6) or

later.

 Client Commands

 77

Client Commands
There is a new remote form method called $clientcommand() that allows you to execute

various functions within the Omnis Web Client, including several types of message boxes

such as an OK message and Yes/No message. This is useful for methods that are not set to

óExecute on the Clientô but may require some limited functionality to operate on the client.

The new method must be executed on the Omnis Server in a remote form instance, and

requires various parameters dependent on the command sent to the client. The

$clientcommand() method has the following general syntax:

Do $cinst.$clientcommand("commandname",row - variabl e)

where $cinst is the current remote form instance, commandname is the name of the

command to be executed on the client, and the row variable contains any number of

parameters passed to the client. In the case of a message box, the row variable contains the

message text, the title text for the box, and the name of methods to be called when either

the Yes or No button is pressed (the method names can be null or empty if no method is to

be called).

A number of commands have been implemented, but further commands may be added in

the future.

Client Message boxes
The following message box functions can be used without the need for client method

execution.

yesnomessage

Opens a Yes/No message box in which Yes is the default button.

Do $cinst.$clientcommand(" ye snomessage ",row - variable)

Where row-variable is row(message text, title text, name of public form server method

called on Yes, name of public form server method called on No, name of public form server

method called on Cancel (leave empty for no cancel button)).

noyesmessage

Opens a No/Yes message box in which No is the default button.

Do $cinst.$clientcommand(" noyesmessage ",row - variable)

Where row-variable is row(message text, title text, name of public form server method

called on Yes, name of public form server method called on No, name of public form server

method called on Cancel (leave empty for no cancel button)).

okcancelmessage

Opens an OK/Cancel message box in which OK is the default button.

Do $cinst.$clientcommand(" okcancelmessage ",row - variab le)

Where row-variable is row(message text, title text, name of public form server method

called on OK, name of public form server method called on Cancel).

Whatôs New in Omnis Studio 5.0.1

78

System Messages
soundbell

Plays the default sound on the client.

Do $cinst.$clientcommand(" soundb ell ",row - variable)

In this case, row() is empty.

Entry Fields
Content tips
The $contenttip property has been added to single line and multi-line entry fields in remote

forms. Content tips allow you to add text to fields to help the user understand what content

should be entered.

Remote Forms
Background gradient patterns
You can now assign gradient patterns to the background of remote forms.

Window Fields
Vertically Centered Text
There is a new property, called $vertcentertext that controls whether or not text is centered

vertically in the field area. The new property makes it easier to produce well aligned text

and fields across all the platforms supported in Omnis. Using this new property in your

windows and remote forms will allow you to line up the base-line of text labels and the text

data contained in fields.

Ç $vertcentertext
If true, single line text is vertically centered in the height of the field. If false, the text is

vertically positioned according to the default positioning for the field. For existing

fields the property is set to kFalse.

The new $vertcentertext property is available for several window field types, including

single line edit fields, combo boxes, droplists, background labels, background text objects,

string labels, shape fields (the text part), checkboxes (no border), radio buttons (no border),

masked entry fields. The new property also applies to several remote form fields, including

single line edit fields, combo boxes, droplists, background labels, string labels, checkboxes

(no border), and masked entry fields. Note the property is not available for multi-line fields

on windows and remote forms.

 Window Fields

 79

When $vertcentertext is kTrue for a label and a field, if you give the label the same height

and $top property as the field, the text will draw on the same base-line on all platforms,

provided the field and label have the same font, point size and style.

There is a new entry on the Align menu, to align labels vertically. To align a number of

labels and fields, select the objects and select the Center Text Vertically option. The new

align option attempts to find labels for fields (objects that have the $vertcentertext property

within the selection), and sets $vertcentertext to kTrue. The $top and $height of the label is

also set to match the corresponding field. You can use Undo to reverse the alignment.

If you have used a multi-line entry field with a label, the above will not work satisfactorily.

To achieve the correct base-line drawing, use a label with $vertcentertext set to kFalse, and

set its $top coordinate to the $top coordinate of the multi-line field plus the height of the

top border of the multi-line field.

Tree lists
You can now use 32x32 or 48x48 size icons for tree list nodes. You need to turn on the new

$useiconsize appearance property of the tree object to assign larger icon sizes to tree lists.

You may also need to adjust the $treelinehtextra and $treeindentlevel properties to

accommodate the larger icons.

Combo boxes
The $contenttip property has been added to combo boxes allowing you to add text to the

field to help the user understand what content should be entered.

Modify Report Fields
The $disablesystemfocus property has been added to Modify Report Fields, so you can

disable the system focus indicator in the field.

Scroll box fields
You can now apply gradient patterns to scroll box fields.

You can use this new effect in several different ways. For example, if you want to make

entry fields within the scroll box appear to be transparent, you can apply a gradient to the

scroll box, place the fields within the scroll box and set their background theme to parent.

Whatôs New in Omnis Studio 5.0.1

80

Localization
String Labels
The string label object (part of the String Table package, used to enable multi-language text

labels) for both remote forms and windows can now display multiple lines of text.

Tooltips
The $st. lookup notation now works for tooltips, that is, to lookup text from a string table to

fill out the $tooltip property for a field.

Studio Messages
"You have been disconnected" type errors are no longer logged by default. There are two

new sys() functions to allow you to turn these messages on and off. (ST/PF/665)

Ç sys(3904)
turns on logging for "You have been disconnected" type error messages.

Ç sys(3905)
turns off logging of these messages.

Trace Log
A new command, Close trace log, has been added to allow you to close the trace log via a

method, such as within the Runtime or Server version of Omnis Studio. The new command

can be executed in the Web Client.

Web Commands
TCPConnect
TCPConnect can now establish a secure connection. It has new optional secure and verify

parameters. The syntax for the command is now:

TCPConnect (hostname,service|port[,secure {Default kFalse},verify

{Default kTrue}]) Returns socket

If the connection is secure, a send using TCPSend will always be blocking, even if the

socket is marked as non-blocking. The TCPBlock command makes a socket blocking or

non-blocking.

See the Omnis Help (F1) under TCPConnect, TCPSend, and TCPBlock for further details.

 Server Load Sharing

 81

SMTPSend
In Omnis Studio 5.0, the SMTPSend command only supported the LOGIN and PLAIN

methods of SMTP authentication. The SMTPSend command now supports CRAM-MD5

authentication, as well as the LOGIN and PLAIN methods.

If the mail server supports CRAM-MD5, then SMTPSend will use CRAM-MD5 if more

than one of these three methods is available, as this is the most secure method of the three it

supports.

See the Omnis Help (F1) under SMTPSend for further details.

Server Load Sharing
Installing omnislsp as a Service (Windows only)
The Server Load Sharing Process executable (omnislsp.exe) can now be installed as a

service which starts-up automatically when Windows loads. For this purpose, two

additional parameters are supported:

omnislsp ïinstall Creates and starts the ñOmnis Load Sharing Processò service.

omnislsp ïuninstall Stops and removes the service.

The startup-type for the new service is set to ñAutomaticò and the service uses the omnislsp

executable and .ini file at their current locations. When omnislsp runs as a service, dialog

boxes are disabled and messages are written to the application event log instead.

Whatôs New in Omnis Studio 5.0.1

82

Using the ODB
There have been a number of changes to how the Omnis DataBridge (ODB) works under

Windows. Specifically, the ODB is now a command line app on Windows, and the separate

ODBService.exe has been removed.

The ODB manual (odb.pdf) has been updated accordingly, but the changes have also been

included here for the benefit of existing users.

On Windows 2000/XP/Vista/7
Launching ODB

Once you have updated the configuration file with the details of your data files, you can

launch the ODB by running the odbridge.exe located in the ODB folder.

Open the command prompt and navigate to the ODB folder.

Type

odbridge (or odbridge start)

And press return.

If ODB has started you should see

Executing start...

...see messages.txt for success

You can check the file messages.txt in the ODB folder to check if ODB has started

successfully. If an error has occurred this file will contain details of the error, or

ODB is now listen ing for requests from your clients

Note: You can also start the ODB by double-clicking odbridge.exe in the window view. In

this case the data bridge process starts silently, although messages are still written to the

messages.txt file.

Shutting down ODB

To stop the data bridge process, type

odbridge shutdown

And press return.

If ODB has received the shut down request, you should see

Executing shutdown...

...see messages.txt for success

If there are users connected, shutdown will fail. It is not safe to shutdown ODB while users

are still connected. You should ask the users to disconnect (that is, close their data files)

before trying again.

However, it is possible to force the ODB to shutdown with users still connected.

Type

odbridge kill

and press return.

 Using the ODB

 83

Note: You risk potential data file corruption if a user is writing to the data file while

shutting down.

Installing as a Service

You can install the ODB as a Windows service which starts automatically each time

Windows loads. To do this, make sure that the ODB is not running, then type

odbridge install

and press return.

If the installation is successful, you should see

Installing ñC:\ \ odbridge.exeò as a service

The operation completed successfully.

If an error occurs, the error message will be displayed instead. By default, the service

(named ñOmnis Data Bridgeò) is configured to start automatically. You can modify this

setting via the Windows Control Panel->Administrative Tools->Services panel if required.

Removing the Service

To stop and remove the ñOmnis Data Bridgeò service, type

odbridge remove

And press return.

If removal is successful, you should see

Uninstalling service: odbridge

The operation completed successfully.

If an error occurs, the error message will be displayed instead.

Note: Removing the service is equivalent to executing the ñodbridge killò command. You

should therefore ensure that there are no clients connected before removing the service.

Whatôs New in Omnis Studio 5.0

84

Whatôs New in Omnis
Studio 5.0

Note the following information was available in the óWhatôs New in Omnis Studio 5.0ô

manual, but is reproduced here for your convenience.

Omnis Studio 5.0 contains many new features and other enhancements to further increase

the power and flexibility of the Omnis development environment. The main theme for

Omnis Studio 5 is 'Extending Omnis to New Platforms and New Markets':

Ç New Platforms:
support for Windows MobileÈ based phones or óSmartphonesô and other mobile

devices

Ç New Markets:
full support for Unicode and extended character sets means you can localize your

application for virtually any market place in the world

New Features
The key new features of Omnis Studio 5.0 are listed below. There are many other

enhancements described later in this document.

Ç Omnis Mobile Client
The new Mobile Client will allow your Omnis applications to run on Windows

Mobile® based devices including Smartphones, PDAs, and other mobile devices. The

new Omnis Mobile Client will allow you to extend your applications to a whole range

of mobile devices, and create applications for entirely new markets.

Ç Unicode
In addition to the new features, all versions of Omnis Studio 5 will support Unicode,

which means you can store and display data that uses Unicode based characters.

Note there are no longer Unicode serial numbers ï Omnis Studio 5 serial numbers

make no distinction between Unicode or Non-Unicode

Ç Localization
The String Label object is now available for Remote forms which means you can

localize the text and strings in your Web Client based applications. In addition, two

new string tables have been introduced to allow you to translate more built-in resources

(strings, messages, toolbars etc) in Omnis and the Omnis Web Client.

In addition, the String Table Editor has been enhanced and now allows you to translate

a whole list of strings into one or more languages automatically.

Ç Menus for Web and Mobile applications
A new class, a Remote menu class, has been added to provide context menus for

 New Features

 85

remote forms. The new remote menu can be used in web browsers or on Windows

Mobile based devices.

Ç Enhanced Component Interface and New Components
The Omnis External Component interface now supports animation and transparency

allowing developers to create new interactive and visually rich components. Plus we

have created two new components, the Accordion and Fisheye, available for window

classes and remote forms, to further enhance your application development.

Ç Configurable Web Server plug-in
Now you can configure the Web Server plug-in via a separate configuration file,

allowing greater security and control over user access to your Omnis web applications.

Ç VCS
Various enhancements in the Omnis VCS including the ability to create branches in a

project, the Find Class option, the ability to strip Comments from builds, the Checked

out classes warning, Project Property updates, and more.

Ç Method Performance
You can now collect performance data for the methods within individual classes in

your application, and method lines can now have line numbers making it easier to read

your code

Ç Windows Registry Admin
The new Omnis RegAdmin component is a non-visual object that gives you access to

the Windows Registry allowing you to manage Keys and Values within the registry.

Ç IMAP and Security added to Web Commands
Support for secure connections has been added to the existing package of web

commands. Therefore, the HTTP, FTP, SMTP and POP3 client commands that

establish a connection to a server all have two new arguments, which control if and

how a secure connection is used. In addition, there is a new set of commands to allow

communications with an IMAP server.

Ç OpenBase DAM

This release includes a new Omnis DAM to allow you to connect to the OpenBase

database. This DAM was previously available from OpenBase, but we have taken over

the maintenance of this DAM with the release of a new version of the DAM

compatible with Omnis Studio 5.

Whatôs New in Omnis Studio 5.0

86

Serial Numbers
The Development, Runtime and Server versions of Omnis Studio 5.0 require a new serial

number to run. Serial numbers from previous versions of Omnis Studio will not work with

Omnis Studio 5.0.

In addition, Omnis Studio version 5.0 serial numbers make no distinction between Unicode

and non-Unicode since the Studio 5.0 release is Unicode only.

Library and Data File Conversion
Omnis Studio 5 will attempt to convert libraries and Omnis data files when you open or

access them in this new version.

THE CONVERSION PROCESS IS IRREVERSIBLE, SO PLEASE MAKE SURE YOU

HAVE A SECURE BACKUP OF ALL YOUR OMNIS LIBRARIES AND DATA FILES

BEFORE CONVERTING THEM TO OMNIS STUDIO VERSION 5.0.

In addition to the normal conversion process, which occurs for all new major versions,

Omnis Studio 5.0 will convert all libraries and data files to a Unicode compatible format,

which again is irreversible. See the Unicode section in this document for specific

information about converting your Omnis data files to Unicode.

System Requirements
This section contains information that you may need to run Omnis Studio 5.0. The basic

System Requirements for running Omnis Studio 5 are as follows:

Windows
Intel system, 1GB RAM, DVD-ROM drive, and 150 MB free hard disk space, Windows

Vista (2GB RAM), Windows XP SP2, Windows 2003 SP1 are preferred.

Omnis Studio is likely to run without service packs and with earlier NT-based operating

systems, such as Windows 2000, however these are not tested configurations.

Linux
Intel system, 1GB RAM, DVD-ROM drive, and 150 MB free hard disk space. 128 MB

Video card capable of supporting 24 bit color and a screen resolution of 1024x768.

Redhat 9, SuSE 10 or Ubuntu 6.

Omnis Studio is likely to run on any Linux distributions that have version 2.0 or higher

kernel, and xfree86 3.3.4 or higher.

Mac OS X
Intel system, 1GB RAM, Mac OS X version 10.4 or above, DVD-ROM drive and 250MB

free hard disk space.

 Windows Mobile Client

 87

Omnis Studio is likely to run without OS updates, however these are not tested

configurations.

Windows Mobile Client
Introduction
Computing is becoming more mobile with laptops and other handheld devices now

outselling traditional desktop computers. The leading growth area in the handheld market is

for so-called óSmartphonesô, which have all the familiar features of mobile phones together

with extended features like WiFi connectivity, satellite positioning and support for

professional office applications like email, word processing, and spreadsheets. These

mobile devices are becoming the must-have device for most business people, allowing

them to communicate while out of the office, to have access to critical data, and to organize

their work and family life more flexibly.

With the release of Omnis Studio 5, you can take advantage of this mobile revolution, by

extending your new and existing Omnis applications to support these new mobile platforms

and devices. Combined with all the other features in Studio 5, such as support for multiple

languages (Studio 5 fully supports Unicode text and data), you can now reach new

customers, in new markets, giving you greater success for your Omnis applications.

There is a short tutorial at the end of this section to show you how quickly and easily you

can create or adapt remote forms for use on mobile devices.

The Omnis Mobile Client
Omnis Studio 5 will include a new version of the Omnis Web Client plug-in that supports

applications running on Microsoft
®
 Windows Mobile

®
 based devices. The new mobile

enabled client is called the Omnis Mobile Client and works in a very similar way as

previous versions of Omnis in that it displays a remote form on the mobile device. The

major difference with the new mobile-enabled client is that it does not run inside a web

browser, such as the mobile version of Internet Explorer, rather it runs inside a small, stand-

alone program, which is downloaded to the mobile device along with the client.

The remote forms that you can run in the new Omnis Mobile Client have a specific size and

format and therefore need to be designed especially for mobile phones, but this is all taken

care of in Omnis in design mode when you create the form. Beyond the size, designing a

remote form for the mobile client is virtually the same as designing a remote form in the

current version of Omnis, and you can use most of the components available in remote

forms today. Your computer and mobile device are connected using Windows Mobile

Device Center (previously called ActiveSync), and once set up, you can test your forms on

the device itself by pressing Ctrl-T.

The Omnis Mobile Client runs on version 5.0, 6.0 and 6.1 of Windows Mobile from

Microsoft. Specifically, the new client has been tested on the new breed of smartphones

which run Windows Mobile óProfessionalô edition. These phones have all the usual phone

Whatôs New in Omnis Studio 5.0

88

capabilities, touch sensitive screens, and PDA functions including the mobile version of

Word, Excel and PowerPoint.

Windows Mobile is available in various editions including Standard, Professional, and

Classic. The Standard version is for mobile phones with only basic phone functionality and

without touchscreens, while Professional is for Pocket PCs or PDAs with touchscreens and

full phone functionality. The Classic version is for Pocket PCs without phone capabilities.

The Omnis Mobile Client does not run on the Standard version of Windows Mobile.

Creating Mobile Forms
Creating forms for mobile devices is very much the same as designing other forms in

Omnis. In Omnis Studio 5 you can now design multiple layouts for the same remote form,

catering for desktop and mobile clients in one single form.

The new remote form property $screensize can be set to Desktop monitors, as well as

Portrait or Landscape for mobile screen sizes. The fields on your form can be arranged for

the different layouts, but only one set of methods, for fields and the form itself, is required.

When you are designing a remote form for mobile, the Windows Mobile titlebar and

menubar are displayed in the design window to give an authentic look.

Screen Size and Orientation

There are many different screen sizes and resolutions for smartphones and other mobile

devices. The new version of Omnis Studio will support the most common, namely 240x320

screens that run at 96dpi, and 480x640 screens that run at 192dpi (the latter uses a 240x320

logical size after scaling ï in other words each application pixel is 4 device pixels).

There is a new remote form property, called $screensize, that stores the current screensize

and orientation of the screen and can be set to one of several values:

Ç kSSZDesktop
For display on a desktop PC (in a web browser)

Ç kSSZwindowsMobile240x240
For mobile devices with screens 240 x 240 px at 96dpi

Ç kSSZwindowsMobile240x320Portrait | kSSZwindowsMobile240x320Landscape
For mobile devices with screens 240 x 320 px at 96dpi, and 480 x 640 at 192dpi, in

Portrait/ Landscape orientation

Ç kSSZwindowsMobile320x320
For mobile devices with screens 320 x 320 px at 96dpi

 Windows Mobile Client

 89

Ç kSSZwindowsMobile480x800Portrait | kSSZwindowsMobile480x800Landscape
For mobile devices with screens 480 x 800 px at 96dpi in Portrait/ Landscape

orientation

kSSZDesktop is for desktop (non-mobile) clients, that is, remote forms running in a

desktop based web browser, as in previous versions of Omnis. The other sizes are for the

Portrait and Landscape orientations of mobile devices with various screen sizes; the

commonest screen size for smartphones is 240 x 320 pixels.

The remote form stores an array of values for the left, top, width and height values for the

form itself, and all of its objects, for each of the supported screen sizes. When you add an

object to the class (either at design time, or at runtime using the notation), the coordinates

are stored for the current value of $screensize. Obviously at this point, coordinates for other

screen sizes are not set, so if you change $screensize, the coordinates returned will be

obtained as follows:

Ç If the screen size has an opposite orientation (portrait/landscape), and the values are set

for that orientation, use those values.

Ç If not, use the coordinates for the first screen size in the order of the list above that has

values set.

Similarly, if you change class object coordinates (either at design time or by using the

notation), the values affected are for the current value of $screensize.

When you open the form in design mode, the appearance of the design mode window

depends on the current setting of $screensize. So for kSSZDesktop, the remote form will be

displayed as in previous versions of Omnis Studio. For the Mobile screen sizes, the design

window is of a fixed size, showing you the space available on the device, together with the

menu and title bar areas of the Windows Mobile device screen.

Form Width and height

When $screensize is set to one of the mobile formats, changing $width and $height for the

remote form changes the width and height of the client area of the design window (the area

where you can place controls), rather than the size of the design window itself. The design

window adds scrollbars to the client area when necessary, therefore you donôt need to

enable the $horzscroll or $vertscroll for the remote form. In addition, you can control

whether the design window shows the Windows Mobile title bar, by setting the

$designshowmobiletitle property for the form, although you may want to show this for

most types of mobile applications.

In most cases, you should set the $width and $height of the remote form to match the exact

coordinates of each of the screen sizes you wish to support in your application, allowing for

the Windows Mobile Title bar and Menu bar which are both 26 pixels each in height. Given

these criteria for setting $width and $height, and assuming the title bar and menu bar are

enabled, you can use the following coordinates for the supported screen sizes.

Whatôs New in Omnis Studio 5.0

90

$screensize / orientation

Settings for remote form

$width $height

kSSZwindowsMobile240x320Portrait 240 268

kSSZwindowsMobile240x320Landscape 320 188

kSSZwindowsMobile240x240 240 188

kSSZwindowsMobile320x320 320 268

kSSZwindowsMobile480x800Portrait 480 748

kSSZwindowsMobile480x800Landscape 800 428

In addition, if you have set the $effect property of the remote form to any effect other than

kBorderNone, you must subtract a further 2 pixels from the above coordinates to allow for

a 1 pixel border around the form.

When the client loads the remote form on the device, it takes the physical screen size of the

device, and for rectangular screens it works out the coordinates for both portrait and

landscape orientations. The client then looks at the width and the height of the form for

each orientation. If the width and height of the form are different, the client will choose the

appropriate form orientation. If the width and height of the form are the same, it treats the

form as only having a single orientation, and the form will appear not to change when you

flip the orientation of the mobile device.

Screen Events

When constructing a form, the Omnis Mobile Client uses the most appropriate screen size

and orientation stored with the form, for the current screen size and orientation of the

device. If the user swaps from portrait to landscape, or back again, the Omnis Mobile Client

repositions the controls automatically, using the coordinates the new orientation stored in

the remote form (assuming you have added a layout for each orientation). If for example,

the user switches to landscape orientation, and you havenôt added a layout for this

orientation to the form, the portrait layout is used by default.

When the orientation changes, Omnis sends an evScreenOrientationChanged event to the

top remote form. This allows the remote form to adjust the coordinates of any dynamically

added objects. In addition, evFormToTop also receives the pScreenSize event parameter,

allowing other forms to make adjustments if necessary when they come to the top.

If you want to use any screen events in your code, such as evScreenOrientationChanged,

you have to enable the events in the $events property of the remote form.

Testing Mobile Forms
Omnis Studio 5 allows you to test a remote form on your mobile device during

development, by connecting your PC running Omnis and your mobile device using the

Windows Mobile Device Center (ActiveSync on older platforms). Assuming your mobile

device is setup correctly:

¶ Connect your mobile device and development PC using a USB cable or cradle

 Windows Mobile Client

 91

¶ Check that the device can use the PCôs Internet connection, for example, by running

Mobile IE on the device

¶ Click on Studio 5.x in the Studio Browser and click Prefs to open the Property

Manager

¶ In the Omnis preferences, click on the $webbrowser property and set it to óWindows

Mobileô by clicking the button; ñwm:ò will be added to the text box which is a shortcut

for the Windows Mobile client

¶ Right-click on your remote form or press Ctrl-T to open your form on the mobile

device

When you press Ctrl-T, Omnis checks to see if the client is present and up-to-date on your

mobile device, and if not, it installs the client automatically. Omnis also checks individual

components within the form and updates them if required via the Omnis Component

Manager.

From there on, whenever you test the remote form from within the IDE, the form will open

on your mobile device. You can change the form as much as you like and continue to test it

using Ctrl-T.

Troubleshooting

If , for some reason, you have the Omnis Mobile Client (omwebcli) already running on your

mobile device you may get an error when you try to open another instance. You need to

open the Task Manager on your mobile device and stop the omwebcli application. To do

this, tap on Start, then Settings, select the System tab, tap on the Task manager, check the

Omnis Studio option and tap on Stop Selected. This applies to Windows Mobile 6.1; so the

procedure for accessing the Task Manager for version 6.0 and 5.0 will be different.

Configuring the Mobile Client
The mobile forms you build in Omnis are run inside the Omnis Web Client, which itself

runs inside a small stand-alone program, called omniswm.exe, installed on the mobile

device and configured using an XML file. In effect, the new client program and XML file

replace the ActiveX and HTML file required for web browser based Omnis applications

and available in previous versions of Omnis. The XML configuration file specifies the

Omnis library name, remote form name, Omnis Server location, and any other additional

parameters.

The Omnis Mobile Client runs in two modes: test form mode, and normal client mode. In

test form mode, the configuration is in the file testformconfig.xml; otherwise, it is in the

file config.xml. There are two files to prevent test form from overwriting a configuration

file you may want to keep: test form works by substituting placeholders in

testformconfigtemplate.xml, copying the resulting file to testformconfig.xml on the client,

and running the client.

Whatôs New in Omnis Studio 5.0

92

The configuration files are located in the same folder as the Omnis Mobile Client

(omniswm.exe), usually in the \Program Files\omwebcli folder of your mobile device. You

can navigate to this folder using the Windows File Manager on your desktop PC.

The configuration file has the following syntax:

<?xml version ="1.0" encoding ="UTF- 8"?>

<OmnisMobileConfig >

 <WindowClass name="TIGERLOGICCORP_OMNISWM"/>

 <TitleBar disa ble ="no" text ="Application Name"/>

 <MenuBar candefault ="yes"/>

<! -- Message for when the application is waiting for a data

connection -- >

 <WaitingForDataConnection message ="Waiting for a data

connection"/>

 <Application name=" ApplicationName " desc =" This is my app ">

 <ServerType unicode ="yes"/>

 <WebServer url ="http://www.myserver.com"

script ="/omnis_apache"/>

 <OmnisServer address ="5920" library ="MOBILE"

class ="NewRemoteForm 1"/>

 <! -- Add up to nine parameters for the application here -- >

 <Paramete r name="p1" value ="value1"/>

 ...

 <Parameter name="p 9" value ="value 9"/>

 </ Application >

</OmnisMobileConfig>

Ç The WindowClass name attribute

uniquely identifies the client program to the Windows Mobile operating system. This

ensures that only one copy of the program with this class exists.

Ç The disable attribute of the TitleBar parameter

can be set to yes, in order to remove the Windows Mobile title bar. The text attribute

gives the application a name displayed on the device, which if omitted, defaults to

ñOmnis Studioò.

Ç The candefault attribute of the MenuBar parameter

can be set to no if you do not want the client to provide a default menu on the

Windows Mobile menu bar.

Ç The Application name

is any name you want to give the Application entry in the configuration file, it can also

have a desc.

Ç The ServerType unicode parameter should always be set to Yes.

 Windows Mobile Client

 93

Ç Webserver parameters

The url and script parameters specify the web server url and location of the Omnis

web server plug-in

Ç The OmnisServer address, library and class parameters specify the port number or IP

address:port of the Omnis Server, the name of your Omnis library, and the remote form

class name; these parameters are the same as the Web Client plug-in properties as in

previous versions of Omnis.

Note that the OmnisServer address attribute can be prefixed by an IP address, even when

the WebServer url and script are empty (as they are for test form): this allows the client to

connect directly to Omnis running on the PC when testing the form.

You can specify up to 9 parameters using Parameter tags to pass to the $construct() method

of the remote task inside the Omnis application.

Mobile Client Updates

The Omnis Mobile Client itself and the various components available in the mobile client

are updated on the end user device automatically via the Omnis Component Download

Manager, as in previous versions of Omnis Studio.

There is a new control platform in the Component Download Manager for Windows

Mobile, which can load Windows Mobile components into the control manager data file

when running on Win32 platforms. It detects whether a DLL is for desktop Windows or for

Windows Mobile.

In addition to the client DLLs, you must also add the file omniswm.exe to the control

manager data file.

The End User Experience

End users need to install the Omnis Mobile Client onto their mobile device by downloading

and running a cab file you have created and containing all the necessary components and

the mobile client itself (see the Deployment section). When the end user displays a form in

your application, the most appropriate screen size and orientation is chosen for the device,

and they can switch between portrait and landscape orientation automatically (assuming

you have designed the form with multiple layouts).

Users can navigate the form using the standard left, right, up and down arrow keys on the

device, or using the touchscreen or stylus, while data can be entered using the keypad. In

addition, you can now add context menus to remote forms (using the new Remote menu

class: see later in this manual), which appear on Windows Mobile when the user taps and

holds on the form.

Mobile Client Design considerations
There are various issues regarding the font table, styles, themes, borders, and so on, that

you should consider when designing remote forms or applications for the mobile devices.

Font table

Studio 5.0 libraries have a new font table #WMWFONTS containing the fonts to be used

for remote forms displayed in Windows Mobile; note that there is no Windows Mobile

Whatôs New in Omnis Studio 5.0

94

report font table, since Omnis reports are not possible on mobile devices. The font table

editor has a new column for the Windows Mobile fonts.

In addition, the Change Font Table dialog has changed, so that there is now a single grid,

where each font cell uses a combo box to allow you to select a font:

Ç Desktop platforms
For desktop platforms, the combo box list is either populated with the fonts available

for the current platform, or a hard-coded list for other platforms (actually obtained

from the resources used to initialize a new font table).

Ç Windows Mobile
The combo box list for Windows Mobile is either hard-coded, or if possible, when

running on Win32, Omnis will obtain the list of fonts for Windows Mobile from the

device. This may result in Omnis attempting to install the client on the device: see the

test form section for more details on client installation.

Style table

Studio 5.0 libraries have a new built-in style platform, kWindowsMobile, used for remote

forms running on Windows Mobile. The initial values in kWindowsMobile are copied from

kWindows.

Design DPI

The library property $designdpi now has a fourth entry, which is the design DPI to be used

for Windows Mobile. This defaults to 96, and for most purposes you wonôt need to change

this value. Note that the scaling for 192dpi devices is not related to this property, rather the

Omnis Mobile Client itself does the scaling to 192dpi automatically.

Borders and Themes

Windows Mobile supports only simple borders for fields, and as a result so does the Omnis

Mobile Client. Setting $effect to any value other than kBorderNone has no effect and

results in a single pixel black border around fields when the form is displayed on the client.

Remote forms now support the $backgroundtheme property. This change applies to desktop

clients as well as mobile clients.

Scrollbars

The Omnis Mobile Client adds scrollbars to its client area automatically, if they are

required to access all of the form. You should therefore avoid enabling scrollbars

($horzscroll and $vertscroll) for the remote form.

Default context menu for lists

Lists in the formflds component group, such as the headed list, now have a default context

menu allowing selection of lines when in multiple select mode.

Keyboard Interface

Windows Mobile devices typically have only a SIP (Software Input Panel) accessed by the

central button in the menu bar, and a few navigation keys. Left, right, up and down arrow

keys perform tabs if the current context of the form control is appropriate, e.g. pressing up

 Windows Mobile Client

 95

arrow when a list is at line one will perform a shift tab. In addition, the center button of the

arrow keypad can be used to carry out selection actions, e.g. check a check box.

Control Appearance

Remote form fields and other controls generally have the correct appearance for Windows

Mobile. This works in a similar manner to other platforms, where the theme or other

property needs to be set to a specific value to obtain the standard system appearance.

However, the Formtbar component (tab bar with square tabs) has the standard Windows

Mobile appearance.

Formflds

There is a new checkbox list control in the formflds component package. This is available

on desktop as well as mobile platforms. The $statecolumn property works in a similar way

to the fat client checkbox list.

The headed list now supports $showcolumnlines and $linehtextra properties. This change

applies on desktop as well as mobile platforms.

Icons on 192dpi devices

If you use a 16x16 icon from an Omnis icon file or #ICONS, when running on a 192dpi

device with automatic scaling, the Omnis Mobile Client uses the 32x32 icon if there is an

equivalent available. This provides a better result than stretching the 16x16 icon.

Hyplinks

The Hyplinks control cannot track while the mouse is over it on Windows Mobile, because

there is no mouse pointer to move around. When you click on the link it highlights

differently on Windows Mobile.

Unsupported Controls

The following controls are not available for Windows Mobile:

Ç Formhpic, Formroll, Formtran

because they are too reliant on mouse tracking when the mouse is not pressed

Ç Formport

because this is not useful on a mobile device

Ç Formpri

because there is no printing API

Ç Formqt3

because there is no QuickTime API

Client method execution

The Quit Omnis command quits the Mobile Client when executed in a client method. It has

no effect in a desktop client.

Whatôs New in Omnis Studio 5.0

96

Mobile Form Events
The evFormToTop event has a new event parameter, pScreenSize. This is a kSSZ...

constant that identifies the current screen size and orientation in use.

In addition, there are three new remote form events.

Ç evScreenOrientationChanged
This applies only to omwebcli, and it was described earlier. Event parameters are

pEventCode and pScreenSize

Ç evOpenContextMenu and evExecuteContextMenu

Events for the new Remote menu class, See the Remote Menus section below.

If you want to use any screen events in your code, such as evScreenOrientationChanged,

you have to enable the events in the $events property of the remote form.

Deployment
The Omnis Mobile Client (omwebcli) is packaged as a CAB file and is installed on your

mobile device automatically when you test your remote forms during development (note it

is placed in the ñ\Program Files\omwebcliò folder for development). For deployment, you

need to create your own CAB file containing the Omnis Mobile Client and your

configuration files. End users need to download your CAB file and run it on their mobile

device. The CAB file should install the Omnis Mobile Client and other files into a sub-

folder of the ñ\Program Files\<your-app-name>ò folder.

Windows Mobile Deployment tool

There is a new tool, called the Omnis Windows Mobile Deployment tool, available in the

Web Client Tools section on the Add-on menu, for creating a CAB file for deploying your

mobile application to end-user devices.

 Windows Mobile Client

 97

The Windows Mobile Deployment tool allows you to create a CAB file for your

application, containing your own values for information such as the application name, icon,

shortcut link in the Programs folder, and the connection configuration for your Omnis

Server. The CAB file created by this tool installs the client application in ñ\Program Filesò

on the mobile device, in a folder named with the abbreviated name of your application.

The parameters that relate to the Omnis Server (e.g. Omnis Server, Omnis Library, etc.) are

identical to the parameters you set in your XML config file for your Mobile Client

application during development or testing. The following options can be set in the

Windows Mobile Deployment window:

Ç Load Settings button
The Load Settings button allows you to load the settings from a CAB file you have

previously created with this tool.

Ç Company name
Your company name, which the user will see on their device.

Ç Abbreviated app name
the name for your mobile application used on the client; up to 8 characters

Ç Programs folder app name
the name used for the Programs folder shortcut for your mobile application

Ç Program icon
the Windows icon file (.ico) for your client application. The icon file must contain

icons for 16x16, 32x32, 48x48 formats. If omitted the Omnis icon is used.

Ç Window class name
The class name for the client application window. This must be unique for the entire

Windows Mobile system on the client device. Therefore, you are advised to use a

combination of your company and application name to create a unique class name. You

cannot use TIGERLOGICCORP_OMNISWM as it it reserved.

Ç Application title
The title used in the client application window.

Ç Show title bar
Displays the title bar in your client application window.

Ç Allow default menu
If checked, the right menu button will use the default Omnis menu if you do not supply

your own right menu

Ç Unicode server
Specifies the Omnis server should be Unicode compatible; leave this checked since all

Studio 5 servers are Unicode compatible.

Ç Web server URL
The URL or server location of the Web Server through which your mobile client

application connects to the Omnis Server.

Ç Web server script
The path or location of the Omnis Web Server plug-in, usually located in your cgi-bin

or scripts folder.

Whatôs New in Omnis Studio 5.0

98

Ç Omnis Server
The port number or combination of IP-address and port number (ipaddress:port) of the

Omnis Server containing your Omnis mobile application.

Ç Omnis Library
The name of the Omnis library containing your Omnis mobile application.

Ç Omnis class
The name of the remote form in your Omnis mobile application; this can be the name

of your applicationôs initial remote form if you have more than one remote form.

Ç Busy image DAT file
The image to be used during communication between the client device and the server

application. This can be created using the Image Compiler available under the Web

Client Tools option in Omnis.

Ç Waiting for data connection message
The message for when the application is waiting for a data connection.

Ç Parameters
List of up to 9 parameters and their values that you can send to the $construct() method

in the remote task in your Omnis application.

Single Mobile Client

You should note that the Windows Mobile OS supports only a single version of the Omnis

Mobile Client installed on a device. In practice, this is unlikely to cause you many

problems since the majority of your end users will not have multiple versions of the Omnis

Mobile Client on their mobile device. This is because the Windows Mobile OS only

supports a single loaded DLL of each DLL module name over the entire system. This

means that if you create a Windows Mobile based Omnis application installed in its own

directory (e.g. using a CAB file created by our deployment mechanism), the application

must use the identical Omnis Mobile Client to all other Windows Mobile based Omnis

applications installed on the device.

The consequence of using two different versions are that the first executed will load and

run, but the second may not, as it could be using a mixture of DLLs from the first and the

second, because Windows Mobile uses any loaded DLLs with the same name from the first

installation when it loads the second. One solution is for the user to terminate the process

for the first application before running the second, but this is not practical for end users.

The best solution is to ensure that the end user has only one version of the Omnis Mobile

Client installed on their mobile device.

Server and Client Requirements

To deploy your mobile application, you need to install an Omnis Server, to host your

Omnis library, database and other application files, and a standard Web Server. In this

respect, the setup is very similar to previous versions of Omnis when deploying Web Client

applications.

Your mobile application can be hosted on a Windows, Mac OS X, or Linux based Omnis

Server even though clients are currently supported only on Windows Mobile based devices.

You will also need to install the Omnis web server plug-in into the Web Server, but you

 Windows Mobile Client

 99

donôt need to set up any html files to configure the client, since the XML configuration file

configures the client.

To use your mobile application, your end users need to download and install the CAB file

you created containing the Omnis Mobile Client and your own XML configuration files.

The Omnis Mobile Client is supported on Windows Mobile óProfessionalô version 5.0, 6.0

and 6.1. The latest version 6.1 is typically available on the new breed of smartphones with

touchscreens, such as the Sony Ericsson Xperia X1, Samsung Omnia, and the HTC óTouchô

range. The Omnis Mobile client does not work on the Standard version of Windows

Mobile.

Direct Client Connections
In addition to the existing technique of connecting web based clients to an Omnis Server

via a Web Server, the new Web Client plug-in (omwebcli) can connect directly to Omnis,

without the need for a Web Server. This capability is available for the web browser based

clients and new Windows Mobile based clients.

The new direct way of connecting web and mobile clients to the Omnis Server may be

useful in certain circumstances, and enables you to test your web and mobile application

without setting up a web server. It also allows you to develop a Windows Mobile client

when running the Omnis Server on Mac OS X or Linux, without needing to set up a Web

Server.

To enable direct connections to the Omnis Server you need to make some modifications to

the html file for web based clients or the config.xml for mobile clients. The WebServer

script attribute needs to be set to /webclient, and the WebServer url attribute needs to be set

to http://<ipaddress>:port. In this case, the OmnisServer address attribute is not relevant

when connecting directly to Omnis in this way.

Omnis Mobile Tutorial
To show how quickly and easily you can create a mobile form in Omnis Studio 5, this

section uses the existing Tutorial library and shows you how to adapt a remote form for use

on a Windows Mobile based device. If you donôt have a mobile device, you can install a

Windows Mobile 6 compatible emulator, available to download from the Microsoft

website.

To try this short tutorial, you can either use the final version of the library, called Pics.lbs

and provided in the Welcome\Tutorial folder, or work through some of the tutorial until

you have created the appropriate database session, schema class and remote form.

Opening/Creating a Library

You can open the final version of the tutorial library, Pics.lbs, from the Welcome\Tutorial

folder, which is located in your Local folder under Windows Vista at something like:

C: \ Users \ <your -

name>\ AppData \ Local \ TigerLogic \ OS5x\ welcome \ tutorial \ final

The advantage of using the Pics.lbs library is that all the classes have been created for and

the library opens a session to the Pics database ready for you to use.

Whatôs New in Omnis Studio 5.0

100

Alternatively, to create the library from scratch, you need to follow the tutorial in the

óIntroducing Omnisô manual or in the Welcome screen (available when you start Omnis or

by clicking on the New Users button), until after the section called óCreating a web formô

(page 37 to 39 in the manual). After that stage in the tutorial, you should have created the

remote form called PicsRemoteForm. Note you can skip the sections on creating the

desktop form (window class), menu class, and report class; you only need to create and

open a database session in the SQL Browser, create the schema class, and create the remote

form based on the Pics database using the SQL Form Wizard.

Adapting your Remote Form for Windows Mobile

Assuming you have opened/created the PicsRemoteForm in the Pics tutorial library, and

that you have opened the Pics database session (called PICSESS in the final tutorial library;

note the session is opened for you in the final version of the Pics library):

¶ Open the remote form PicsRemoteForm

¶ Open the Property Manager and set the form background to white (in the final tutorial

library the background is blue)

¶ Select all the fields (not the buttons) on the form, set their $backcolor property to white

¶ Assign a simple plain border to all the fields by setting $effect to kBorderPlain (note

that kBorderPlain is the only effect applicable to Windows Mobile)

Your remote form should look something like this:

¶ Click on the background of the form and open the Property Manager (press F6)

¶ Under the General tab, click on the $screensize property

 Windows Mobile Client

 101

¶ Select kSSZwindowsMobile240x320Portrait from the $screensize droplist

The remote form will resize to a format suitable for display on mobile devices, and in this

case, in the portrait orientation.

¶ Resize and rearrange the fields and buttons on the remote form to fit the new mobile

format (youôll need to use the scroll bars on the form to access all the fields/buttons)

Your form should look something like the following:

When youôre happy with arrangement of the fields and buttons, you need to set the width

and height of the form, which will also remove the scroll bars.

¶ Click on the background of the form and change $width to 240, and change the $height

property to 268

Note that these values for $width and $height are for the portrait screen size / orientation

only, that is, $screensize = kSSZwindowsMobile240x320Portrait. The calculation for the

$height is 320 px, less 26 px each for the Windows Mobile title bar and menu bar. Later in

this section you can setup the form for the Landscape orientation, which will have different

values for the width and height.

Whatôs New in Omnis Studio 5.0

102

Testing your Mobile Form

To test your form locally, between your desktop PC and your mobile device, you need to

connect your device via a USB cable or cradle and set a few options in Omnis. You must

have the Windows Mobile Device Center installed on your PC (this is called ActiveSync in

Windows XP and older platforms).

¶ Connect your mobile device to the PC running Omnis Studio using a USB cable or

cradle, and check that the device can use the PCôs Internet connection (e.g. run Mobile

IE by tapping Start >> Internet Explorer on your device)

¶ In Omnis, click on óStudio 5.xô in the Studio Browser and click the Prefs option to

display the Omnis preferences in the Property Manager

¶ Click on the $webbrowser property in the Property Manager, and in the dialog that

opens, click the óWindows Mobileô button

¶ ñwm:ò will be added to the text box which is a shortcut for the default location of the

Omnis Mobile Client (if the client is not on your device it will be installed

automatically when you test the form for the first time)

¶ In the Studio Browser, right-click on the PicsRemoteForm and select Test Form, or if

the remote form is on top, press Ctrl-T

If this is the first time you have used the Omnis Mobile Client, Omnis will try to install it

on your mobile device. The message ñCheck your device for installation messagesò should

appear in Omnis on your desktop PC. The óomwebcli.cabô should run on your device,

installing the Omnis Mobile Client into the Program Files folder on your device.

¶ Confirm the installation on your mobile device, and in Omnis, confirm the installation

was successful

The remote form should open on your device. You can tap the Next button and you will see

data from the Pics database. If you donôt see any data, check that the database is open in

Omnis (in this case the Pics.df1 datafile) and that the PICSESS session is open and visible

in the SQL Browser (the final Pics library should open the database session automatically).

